Unknown

Dataset Information

0

Phosphodiesterase-induced cAMP degradation restricts hepatitis B virus infection.


ABSTRACT: Hepatitis B virus (HBV) entry into hepatocytes is mediated via a high-affinity interaction between the preS1 glycoprotein and sodium/bile acid cotransporting polypeptide (NTCP). To date, in vitro model systems rely on high multiplicities of infection to achieve infection of cell lines overexpressing human NTCP. This study investigates a novel regulatory pathway for NTCP trafficking to the cell surface, induced by DMSO-mediated cellular differentiation. DMSO rapidly induces high cell surface expression of NTCP and results in increased susceptibility of cells to HBV infection. Additionally, DMSO treatment induces actin, as well as Tubulin reshaping within the cells. We show that direct disruption of the actin and Tubulin network directly enhances NTCP expression and the subsequent susceptibility of cells to HBV infection. DMSO induces these changes via alterations in the levels of cyclic (c)AMP, which participates in the observed actin rearrangements. Blocking of phosphodiesterases (PDEs), which degrade accumulated cAMP, had the same effect as DMSO differentiation and demonstrates that DMSO prevents phosphodiesterase-mediated cAMP degradation. This identifies adenylate cyclase as a novel target for blocking the entry of HBV via targeting the cell surface accumulation of NTCP. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.

SUBMITTER: Evripioti AA 

PROVIDER: S-EPMC6501904 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphodiesterase-induced cAMP degradation restricts hepatitis B virus infection.

Evripioti Antonia Alexandra AA   Ortega-Prieto Ana Maria AM   Skelton Jessica Katy JK   Bazot Quentin Q   Dorner Marcus M  

Philosophical transactions of the Royal Society of London. Series B, Biological sciences 20190501 1773


Hepatitis B virus (HBV) entry into hepatocytes is mediated via a high-affinity interaction between the preS1 glycoprotein and sodium/bile acid cotransporting polypeptide (NTCP). To date, in vitro model systems rely on high multiplicities of infection to achieve infection of cell lines overexpressing human NTCP. This study investigates a novel regulatory pathway for NTCP trafficking to the cell surface, induced by DMSO-mediated cellular differentiation. DMSO rapidly induces high cell surface expr  ...[more]

Similar Datasets

| S-EPMC5832748 | biostudies-literature
| S-EPMC8084336 | biostudies-literature
| S-EPMC5871769 | biostudies-literature
| S-EPMC6173519 | biostudies-literature
| S-EPMC7524150 | biostudies-literature
2024-07-16 | GSE263121 | GEO
2024-07-16 | GSE263120 | GEO
| S-EPMC4522674 | biostudies-literature
| S-EPMC4460451 | biostudies-literature
| S-EPMC7412310 | biostudies-literature