Unknown

Dataset Information

0

Effects of scleral collagen crosslinking with different carbohydrate on chemical bond and ultrastructure of rabbit sclera: Future treatment for myopia progression.


ABSTRACT:

Background

Myopia is the most common ocular disorder and is mainly caused by axial elongation of the sclera. If the stiffness of sclera increased, it can inhibit myopia progression. The aim of this study is to compare the effect of the collagen crosslinking with different types and concentrations of carbohydrates on chemical bond and ultrastructural change of rabbit sclera.

Methods

Nine New Zealand white rabbits were treated with five, sequential sub-Tenon injections of 0.15 mL solutions of ribose, sucrose, and glycogen of 0.1, 0.2 and 0.4 M concentration at the right eye over 14 days. Ten weeks after the last injection, the rabbits were sacrificed and chemical bond and ultrastructural changes were compared with those of the untreated left sclera using Raman spectroscopy, atomic force microscopy (AFM), and histology.

Results

Raman spectroscopy of the control and cross-linked rabbit sclera tissue revealed different types of collagen interactions. Raman shift of 919 cm-1 (C-C stretching and vibration of the proline ring in collagen) was the highest in ribose, followed by sucrose and glycogen. Total energy intensity was also highest in ribose, followed by sucrose and glycogen, and showed a tendency to increase at higher concentrations. AFM revealed interlocking arrangements of collagen fibrils. The collagen fibril diameter was 105.6 ± 21.2 nm, 109.4 ± 28.8 nm, 113.1 ± 30.8 nm and 137.6 ± 25.3 nm for control group, 0.4 M glycogen, sucrose, and ribose, respectively. Histology indicated increased density of the collagen bundle and no increase in inflammatory cell recruitment compared to control at high concentrations of ribose.

Conclusions

Scleral crosslinking using glycation increased the scleral biomechanical rigidity and these results were particularly pronounced in ribose. Scleral crosslinking using glycation may be a promising method for inhibiting high myopia progression.

SUBMITTER: Kim TG 

PROVIDER: S-EPMC6513270 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of scleral collagen crosslinking with different carbohydrate on chemical bond and ultrastructure of rabbit sclera: Future treatment for myopia progression.

Kim Tae Gi TG   Kim Wansun W   Choi Samjin S   Jin Kyung Hyun KH  

PloS one 20190513 5


<h4>Background</h4>Myopia is the most common ocular disorder and is mainly caused by axial elongation of the sclera. If the stiffness of sclera increased, it can inhibit myopia progression. The aim of this study is to compare the effect of the collagen crosslinking with different types and concentrations of carbohydrates on chemical bond and ultrastructural change of rabbit sclera.<h4>Methods</h4>Nine New Zealand white rabbits were treated with five, sequential sub-Tenon injections of 0.15 mL so  ...[more]

Similar Datasets

| S-EPMC2730748 | biostudies-literature
| S-EPMC6064999 | biostudies-literature
| S-EPMC3056124 | biostudies-literature
| S-EPMC7425206 | biostudies-literature
| S-EPMC4429026 | biostudies-literature
| S-EPMC7997908 | biostudies-literature
| S-EPMC7488211 | biostudies-literature
| S-EPMC4113961 | biostudies-literature
| S-EPMC7582313 | biostudies-literature
| S-EPMC5104419 | biostudies-literature