Project description:Prenatal consumption of omega-3 fatty acids can act as an adjuvant in the development of the immune system and affect the inflammatory response of neonates.We conducted a double-blind, randomized, placebo-controlled trial in Cuernavaca, Mexico. We randomly assigned 1,094 pregnant women (18-35 years of age) to receive 400 mg/d of algal docosahexaenoic acid (DHA) or placebo from 18 to 22 weeks of gestation through delivery. Birth outcomes and respiratory symptoms information until 18 months were available for 869 mother-child pairs. Questionnaires were administered, and maternal blood samples were obtained at baseline. Maternal atopy was based on specific IgE levels. During follow-up, information on infants' respiratory symptoms was collected through questionnaires administered at 1, 3, 6, 9, 12, and 18 months of age. Negative binomial regression models were used to evaluate the effect of supplementation on respiratory symptoms in infants.Among infants of atopic mothers, a statistically significant protective effect of DHA treatment was observed on phlegm with nasal discharge or nasal congestion (0.78; 95% CI, 0.60-1.02) and fever with phlegm and nasal discharge or nasal congestion (0.53; 95% CI, 0.29-0.99), adjusting for potential confounders.Our results support the hypothesis that DHA supplementation during pregnancy may decrease the incidence of respiratory symptoms in children with a history of maternal atopy.ClinicalTrials.gov; No.: NCT00646360; URL: www.clinicaltrials.gov.
Project description:Maternal obesity is associated with adverse offspring outcomes. Inflammation and deficiency of anti-inflammatory nutrients like omega(n)-3 polyunsaturated fatty acids (PUFA) may contribute to these associations. Fetal supply of n-3 PUFA is dependent on maternal levels and studies have suggested that improved offspring outcomes are associated with higher maternal intake. However, little is known about how maternal obesity affects the response to n-3 supplementation during pregnancy. We sought to determine (1) the associations of obesity with PUFA concentrations and (2) if the systemic response to n-3 supplementation differs by body mass index (BMI). This was a secondary analysis of 556 participants (46% lean, 28% obese) in the Maternal-Fetal Medicine Units Network trial of n-3 (Docosahexaenoic acid (DHA) + Eicosapentaenoic acid (EPA)) supplementation, in which participants had 2g/day of n-3 (n = 278) or placebo (n = 278) from 19 to 22 weeks until delivery. At baseline, obese women had higher plasma n-6 arachidonic acid concentrations (β: 0.96% total fatty acids; 95% Confidence Interval (CI): 0.13, 1.79) and n-6/n-3 ratio (β: 0.26 unit; 95% CI: 0.05, 0.48) compared to lean women. In the adjusted analysis, women in all BMI groups had higher n-3 concentrations following supplementation, although obese women had attenuated changes (β = -2.04%, CI: -3.19, -0.90, interaction p = 0.000) compared to lean women, resulting in a 50% difference in the effect size. Similarly, obese women also had an attenuated reduction (β = 0.94 units, CI: 0.40, 1.47, interaction p = 0.046) in the n-6/n-3 ratio (marker of inflammatory status), which was 65% lower compared to lean women. Obesity is associated with higher inflammation and with an attenuated response to n-3 supplementation in pregnancy.
Project description:Oxidative stress is a biological imbalance in reactive oxygen species and antioxidants. Increased oxidative stress during pregnancy has been associated with adverse birth outcomes. Omega-3 fatty acid (n-3 FA) supplementation may decrease oxidative stress; however, this relationship is seldom examined during pregnancy. This study assessed the association between n-3 FA supplement use during pregnancy and urinary oxidative stress biomarker concentrations. Data came from The Infant Development and the Environment Study (TIDES), a prospective cohort study that recruited pregnant women in 4 US cities between 2010-2012. Third trimester n-3 FA intake was self-reported. Third trimester urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) was measured as an oxidative stress biomarker. Additionally, we measured the major metabolite of 8-iso-PGF2α and Prostaglandin F2α (PGF2α) and utilized the 8-iso-PGF2α to PGF2α ratio to calculate the change in 8-iso-PGF2α reflecting oxidative stress versus inflammation. Adjusted linear models were used to determine associations with control for confounding. Of 725 women, 165 reported n-3 FA supplement use in the third trimester. In adjusted linear models, n-3 FA use was associated with 10.2% lower levels of 8-iso-PGF2α (95% Confidence Interval [CI]: -19.6, 0.25) and 10.3% lower levels of the metabolite (95% CI: -17.1, -2.91). No associations were observed with PGF2α. The lower levels of 8-iso-PGF2α appeared to reflect a decrease in oxidative stress (percent change with supplement use: -18.7, 95% CI: -30.1, -5.32) rather than inflammation. Overall, third trimester n-3 FA intake was associated with lower concentrations of 8-iso-PGF2α and its metabolite, suggesting a decrease in maternal oxidative stress during pregnancy.
Project description:Intrauterine Growth Restriction (IUGR) is a major problem in pig production and different strategies, mainly maternal supplementation with different agents, are currently being studied. The combination of hydroxytyrosol and n3-PUFA seems to be a promising treatment to counteract IUGR, since the combination may help improve n3-PUFA composition and lower the inflammatory status of IUGR piglets. The aim of the present study is to determine the effects of a maternal supplementation, from day 35 to day 100 of pregnancy, with linseed oil and hydroxytyrosol on the fetal FA composition. The results showed higher n3 levels, including eicosapentaenoic and docosahexaenoic FA in the offspring from treated gilts, which showed lower n6-PUFA/n3-PUFA (n6/n3) ratios. Saturated and monounsaturated fatty acids were also affected by treatment, especially in the muscle and brain. Thus, a maternal supplementation with linseed oil and hydroxytyrosol affected the fetal FA tissue composition, which could have implications in pig production due to the improvement of the piglets' health status.
Project description:There are few studies that look at the intake of all types of omega-3 polyunsaturated fatty acids (n-3 PUFAs) during the different stages of pregnancy along with a long-term neuropsychological follow-up of the child. This study aims to explore the association between maternal n-3 PUFA intake during two periods of pregnancy and the child's neuropsychological scores at different ages. Prospective data were obtained for 2644 pregnant women recruited between 2004 and 2008 in population-based birth cohorts in Spain. Maternal n-3 PUFA intake during the first and third trimester of pregnancy was estimated using validated food frequency questionnaires. Child neuropsychological functions were assessed using Bayley Scales of Infant Development version one (BSID) at 1 year old, the McCarthy Scale of Children's Abilities (MSCA) at 4 years old, and the Attention Network Test (ANT) at 7 years old. Data were analysed using multivariate linear regression models and adjusted for potential covariates, such as maternal social class, education, cohort location, alcohol consumption, smoking, breastfeeding duration, and energy intake. Compared to participants in the lowest quartile (<1.262 g/day) of n-3 PUFA consumption during the first trimester, those in the highest quartile (>1.657 g/day) had a 2.26 points (95% confidence interval (CI): 0.41, 4.11) higher MSCA general cognitive score, a 2.48 points (95% CI: 0.53, 4.43) higher MSCA verbal score, and a 2.06 points (95% CI: 0.166, 3.95) higher MSCA executive function score, and a 11.52 milliseconds (95% CI: -22.95, -0.09) lower ANT hit reaction time standard error. In the third pregnancy trimester, the associations were weaker. Positive associations between n-3 PUFA intake during early pregnancy and child neuropsychological functions at 4 and 7 years of age were found, and further clinical research is needed to confirm these findings.
Project description:This study investigates relations of maternal N-3 and N-6 polyunsaturated fatty acids (PUFA) intake during pregnancy with offspring body mass index (BMI), height z-score and metabolic risk (fasting glucose, C-peptide, leptin, lipid profile) during peripuberty (8-14 years) among 236 mother-child pairs in Mexico. We used food frequency questionnaire data to quantify trimester-specific intake of N-3 alpha-linolenic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); N-6 linoleic acid and arachidonic acid (AA); and N-6:N-3 (AA:EPA+DHA), which accounts for the fact that the two PUFA families have opposing effects on physiology. Next, we used multivariable linear regression models that accounted for maternal education and parity, and child's age, sex and pubertal status, to examine associations of PUFA intake with the offspring outcomes. In models where BMI z-score was the outcome, we also adjusted for height z-score. We found that higher second trimester intake of EPA, DHA and AA were associated with lower offspring BMI and height z-score. For example, each 1-s.d. increment in second trimester EPA intake corresponded with 0.25 (95% CI: 0.03, 0.47) z-scores lower BMI and 0.20 (0.05, 0.36) z-scores lower height. Accounting for height z-score in models where BMI z-score was the outcome attenuated estimates [e.g., EPA: -0.16 (-0.37, 0.05)], suggesting that this relationship was driven by slower linear growth rather than excess adiposity. Maternal PUFA intake was not associated with the offspring metabolic biomarkers. Our findings suggest that higher PUFA intake during mid-pregnancy is associated with lower attained height in offspring during peripuberty. Additional research is needed to elucidate mechanisms and to confirm findings in other populations.
Project description:It is unanimously recognized that the maternal nutritional status at the pregnancy onset influence both short-term and long-term health of the mother and offspring. Among several nutrients, LCPUFA, particularly from the omega-3 family, are of utmost importance. This study was carried out to determine fatty acids profile of maternal erythrocyte membranes in early pregnancy and to identify potential determinants impacting on this status.A cohort of 122 healthy women with a singleton pregnancy was included. Fatty acids were analyzed using gas chromatography. Because of the lack of cutoff values, reference ranges were used to determine fatty acids categories.Of concern, our data revealed low monounsaturated and long-chain omega-3 fatty acid status in most participants. More than 75% of Belgian pregnant women exhibited Pal, AO and EPA levels as well as IOM3 values below the laboratory reference ranges. Higher DHA concentrations and IOM3 values were found among foreign-nationality participants, non-smokers and physically active women. With regard to dietary factors, omega-3 supplements and diet seem to be complementary since DHA from supplements (but not from diet) and EPA from diet (but not from supplements) were found to be associated with higher concentrations of DHA and EPA, respectively.Our study presents evidence demonstrating that the fatty acid status of most early pregnant women is far from being optimal based on the admitted general reference values. Clinicians should be advice to carefully evaluate and improve this status to guarantee the best possible outcome for both the mother and the baby.
Project description:Scientific societies recommend increasing intake of docosahexaenoic acid (DHA) by 200 mg/day during pregnancy. However, individually, clinical events correlate quite strongly with levels of eicosapentaenoic acid (EPA) and DHA in blood, but these levels poorly correlate with amounts ingested. EPA and DHA in erythrocytes (Omega-3 Index) have a low biologic variability. If analyzed with a standardized analytical procedure (HS-Omega-3 Index®), analytical variability is low. Thus, the largest database of any fatty acid analytical method was provided. Pregnant women in Germany had a mean Omega-3 Index below the target range suggested for cardiovascular disease of 8-11%, with large interindividual variation, and quite independent of supplementation with EPA and DHA. In Germany, premature birth is a major health issue. Premature birth and other health issues of pregnant women and their offspring correlate with levels of EPA and DHA in blood and can be reduced by increasing intake of EPA and DHA, according to individual trials and pertinent meta-analyses. Very high intake or levels of EPA and DHA may also produce health issues, like bleeding, prolonged gestation, or even premature birth. While direct evidence remains to be generated, evidence from various scientific approaches supports that the target range for the Omega-3 Index of 8-11% might also pertain to pregnancy and lactation.
Project description:Study questionIs self-reported use of omega-3 fatty acid supplements associated with fecundability, the probability of natural conception, in a given menstrual cycle?Summary answerProspectively recorded omega-3 supplement use was associated with an increased probability of conceiving.What is known alreadyIn infertile women, omega-3 fatty acid intake has been associated with increased probability of pregnancy following IVF. In natural fertility, studies are conflicting, and no study of natural fertility has evaluated omega-3 fatty acid supplementation and fecundity.Study design, size, durationSecondary data analysis of 900 women contributing 2510 cycles in Time to Conceive (TTC), a prospective, time to pregnancy cohort study from 2008 to December 2015.Participants/materials, setting, methodsWomen aged 30-44 years, trying to conceive <3 months, without history of infertility were followed using standardized pregnancy testing. While attempting to conceive, women daily recorded menstrual cycle events and supplement and medication intake using the Cerner Multum Drug Database. Supplements and vitamins containing omega-3 were identified. Omega-3 use, defined as use in at least 20% of days in a given menstrual cycle, in each pregnancy attempt cycle was determined. A discrete-time Cox proportional hazards model was used to calculate the fecundability ratio.Main results and the role of chanceWomen taking omega-3 supplementation were more likely to be younger, thinner, nulligravid, white and to take vitamin D, prenatal and multivitamins compared to women not taking omega-3s. After adjusting for age, obesity, race, previous pregnancy, vitamin D and prenatal and multivitamin use, women taking omega-3 supplements had 1.51 (95% CI 1.12, 2.04) times the probability of conceiving compared to women not taking omega-3s.Limitations, reasons for cautionOur study was not a randomized controlled trial. The women who used omega-3 supplements may represent a more health-conscious population. We sought to address this by adjusting for multiple factors in our model. Additionally, the omega-3 fatty acid supplements that TTC participants used included multiple types and brands with varying dosages of omega-3 fatty acids. Women reported the type of supplement they were taking but not the concentration of omega-3s in that supplement. It is therefore not possible to compare dosing or a dose-response relationship in our study.Wider implications of the findingsOmega-3 supplementation may present a feasible and inexpensive modifiable factor to improve fertility. Randomized controlled trials are needed to further investigate the benefits of omega-3 supplementation for women trying to conceive naturally.Study funding/competing interestsThis study was supported by the Division of Reproductive Endocrinology and Infertility at the University of North Carolina at Chapel Hill, the NIH/NICHD (R21 HD060229-01 and R01 HD067683-01), and in part by the Intramural Research Program of the National Institute of Environmental Health Sciences (Z01ES103333). The authors declare that there is no conflict of interest.Trial registration numberN/A.
Project description:Metabolic conditions during brain development may have long-term consequences on brain metabolism, thereby influencing the risk of neurodegenerative disease in later life. To ascertain the long-term consequences of omega-3 (?3) fatty acid deficiency during brain development on oxidative fatty acid degradation in the brain and the development of Alzheimer-like pathology, wild-type (WT) female mice were fed diets that were either replete or deficient in ?3 fatty acids for 5 weeks. These females were then mated with hemizygous 5xFAD male transgenic (TG) mouse models of Alzheimer's disease, and the progeny were continued on diets that were either ?3-replete or ?3-deficient. When the progeny were 6 months of age, they received radiolabeled arachidonic acid (ARA) by intracerebroventricular injection. Five days after these injections, the brains were harvested and oxidative degradation of the radiolabeled ARA was characterized. Among the progeny of female mice on an ?3-replete diet, TG progeny had lower PSD-95 expression and higher oxidative ARA degradation than WT progeny. Progeny on an ?3-deficient diet, however, had no significant differences in PSD-95 expression between TG and WT mice, or in the extent of ARA degradation. In TG mice, an ?3-deficient diet reduced oxidative ARA degradation to a greater extent than in WT mice. The reductions in oxidative ARA degradation occurred even if the progeny of female mice on an ?3-deficient diet resumed an ?3-replete diet immediately on weaning. These results demonstrate that dietary ?3 fatty acid deficiency during development can cause long-term changes in the expression of a synaptic marker and long-term reductions in the rate of ARA degradation in the WT brain, which are not completely alleviated by an ?3-replete diet after weaning. The elimination of differences between TG and WT mice by an ?3-deficient diet suggests that mechanisms regulating PSD-95 expression and the oxidative degradation of ARA are related and that the timing of dietary ?3 intake during development may influence Alzheimer's disease-related pathological changes later in life.