Unknown

Dataset Information

0

Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis.


ABSTRACT: The major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a C9orf72 G4C2 repeat expansion1,2. Proposed mechanisms by which the expansion causes c9FTD/ALS include toxicity from repeat-containing RNA and from dipeptide repeat proteins translated from these transcripts. To investigate the contribution of poly(GR) dipeptide repeat proteins to c9FTD/ALS pathogenesis in a mammalian in vivo model, we generated mice that expressed GFP-(GR)100 in the brain. GFP-(GR)100 mice developed age-dependent neurodegeneration, brain atrophy, and motor and memory deficits through the accumulation of diffuse, cytoplasmic poly(GR). Poly(GR) co-localized with ribosomal subunits and the translation initiation factor eIF3? in GFP-(GR)100 mice and, of importance, in c9FTD/ALS patients. Combined with the differential expression of ribosome-associated genes in GFP-(GR)100 mice, these findings demonstrate poly(GR)-mediated ribosomal distress. Indeed, poly(GR) inhibited canonical and non-canonical protein translation in HEK293T cells, and also induced the formation of stress granules and delayed their disassembly. These data suggest that poly(GR) contributes to c9FTD/ALS by impairing protein translation and stress granule dynamics, consequently causing chronic cellular stress and preventing cells from mounting an effective stress response. Decreasing poly(GR) and/or interrupting interactions between poly(GR) and ribosomal and stress granule-associated proteins may thus represent potential therapeutic strategies to restore homeostasis.

SUBMITTER: Zhang YJ 

PROVIDER: S-EPMC6520050 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


The major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a C9orf72 G<sub>4</sub>C<sub>2</sub> repeat expansion<sup>1,2</sup>. Proposed mechanisms by which the expansion causes c9FTD/ALS include toxicity from repeat-containing RNA and from dipeptide repeat proteins translated from these transcripts. To investigate the contribution of poly(GR) dipeptide repeat proteins to c9FTD/ALS pathogenesis in a mammalian in vivo model, we generated mice that expresse  ...[more]

Similar Datasets

2019-02-04 | GSE112931 | GEO
| PRJNA449525 | ENA
| S-EPMC8678157 | biostudies-literature
| S-EPMC6754483 | biostudies-literature
| S-EPMC7492664 | biostudies-literature
| S-EPMC6985338 | biostudies-literature
| S-EPMC10630271 | biostudies-literature
| S-EPMC3527825 | biostudies-other
| S-EPMC7912327 | biostudies-literature
| S-EPMC6416930 | biostudies-literature