ABSTRACT: Disease spread in populations is a consequence of the interaction between host, pathogen, and environment, i.e. the epidemiological triad. Yet the influences of each triad component may vary dramatically for different settings. Comparison of environmental, demographic, socio-economic, and historical backgrounds may support tailoring site-specific control measures. Because of the long-term survival of Bacillus anthracis, Anthrax is a suitable example for studying the influence of triad components in different endemic settings. We compared the spatiotemporal patterns of historic animal Anthrax records in two endemic areas, located at northern latitudes in the western and eastern hemispheres. Our goal was to compare the spatiotemporal patterns in Anthrax progression, intensity, direction, and recurrence (disease hot spots), in relation to epidemiological factors and potential trigger events. Reported animal cases in Minnesota, USA (n = 289 cases between 1912 and 2014) and Kazakhstan (n = 3,997 cases between 1933 and 2014) were analyzed using the spatiotemporal directionality test and the spatial scan statistic. Over the last century Anthrax occurrence in Minnesota was sporadic whereas Kazakhstan experienced a long-term epidemic. Nevertheless, the seasonality was comparable between sites, with a peak in August. Declining number of cases at both sites was attributed to vaccination and control measures. The spatiotemporal directionality test detected a relative northeastern directionality in disease spread for long-term trends in Minnesota, whereas a southwestern directionality was observed in Kazakhstan. In terms of recurrence, the maximum timespans between cases at the same location were 55 and 60 years for Minnesota and Kazakhstan, respectively. Disease hotspots were recognized in both settings, with spatially overlapping clusters years apart. Distribution of the spatiotemporal cluster radii between study sites supported suggestion of site-specific control zones. Spatiotemporal patterns of Anthrax occurrence in both endemic regions were attributed to multiple potential trigger events including major river floods, changes in land use, agriculture, and susceptible livestock populations. Results here help to understand the long-term epidemiological dynamics of Anthrax while providing suggestions to the design and implementation of prevention and control programs, in endemic settings.