Unknown

Dataset Information

0

Heterostructured SnO2-SnS2@C Embedded in Nitrogen-Doped Graphene as a Robust Anode Material for Lithium-Ion Batteries.


ABSTRACT: Tin-based anode materials with high capacity attract wide attention of researchers and become a strong competitor for the next generation of lithium-ion battery anode materials. However, the poor electrical conductivity and severe volume expansion retard the commercialization of tin-based anode materials. Here, SnO2-SnS2@C nanoparticles with heterostructure embedded in a carbon matrix of nitrogen-doped graphene (SnO2-SnS2@C/NG) is ingeniously designed in this work. The composite was synthesized by a two-step method. Firstly, the SnO2@C/rGO with a nano-layer structure was synthesized by hydrothermal method as the precursor, and then the SnO2-SnS2@C/NG composite was obtained by further vulcanizing the above precursor. It should be noted that a carbon matrix with nitrogen-doped graphene can inhibit the volume expansion of SnO2-SnS2 nanoparticles and promote the transport of lithium ions during continuous cycling. Benefiting from the synergistic effect between nanoparticles and carbon matrix with nitrogen-doped graphene, the heterostructured SnO2-SnS2@C/NG further fundamentally confer improved structural stability and reaction kinetics for lithium storage. As expected, the SnO2-SnS2@C/NG composite exhibited high reversible capacity (1201.2 mA h g-1 at the current rate of 0.1 A g-1), superior rate capability and exceptional long-life stability (944.3 mAh g-1 after 950 cycles at the current rate of 1.0 A g-1). The results demonstrate that the SnO2-SnS2@C/NG composite is a highly competitive anode material for LIBs.

SUBMITTER: Li H 

PROVIDER: S-EPMC6527815 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heterostructured SnO<sub>2</sub>-SnS<sub>2</sub>@C Embedded in Nitrogen-Doped Graphene as a Robust Anode Material for Lithium-Ion Batteries.

Li Hui H   Zhang Bao B   Wang Xu X   Zhang Jie J   An Tianhui T   Ding Zhiying Z   Yu Wanjing W   Tong Hui H  

Frontiers in chemistry 20190514


Tin-based anode materials with high capacity attract wide attention of researchers and become a strong competitor for the next generation of lithium-ion battery anode materials. However, the poor electrical conductivity and severe volume expansion retard the commercialization of tin-based anode materials. Here, SnO<sub>2</sub>-SnS<sub>2</sub>@C nanoparticles with heterostructure embedded in a carbon matrix of nitrogen-doped graphene (SnO<sub>2</sub>-SnS<sub>2</sub>@C/NG) is ingeniously designed  ...[more]

Similar Datasets

| S-EPMC8839326 | biostudies-literature
| S-EPMC8145426 | biostudies-literature
| S-EPMC4361932 | biostudies-literature
| S-EPMC8877561 | biostudies-literature
| S-EPMC6957017 | biostudies-literature
| S-EPMC9816316 | biostudies-literature
| S-EPMC4357011 | biostudies-other
| S-EPMC4668578 | biostudies-literature
| S-EPMC7075132 | biostudies-literature
| S-EPMC3730167 | biostudies-literature