Unknown

Dataset Information

0

Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries.


ABSTRACT: SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g(-1) are 2213 and 1402 mA h g(-1) with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g(-1) after 100 cycles at current densities of 100, 300, 500 and 700 mA g(-1), respectively. Even at a high current density of 1000 mA g(-1), the first discharge and charge capacities are 1502 and 876 mA h g(-1), and the discharge specific capacities remains 1057 and 677 mA h g(-1) after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.

SUBMITTER: Liu L 

PROVIDER: S-EPMC4357011 | biostudies-other | 2015

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7075132 | biostudies-literature
| S-EPMC3730167 | biostudies-literature
| S-EPMC8145426 | biostudies-literature
| S-EPMC5353649 | biostudies-literature
| S-EPMC7023017 | biostudies-literature
| S-EPMC4668578 | biostudies-literature