An invariants-based method for efficient identification of hybrid species from large-scale genomic data.
Ontology highlight
ABSTRACT: BACKGROUND:Coalescent-based species tree inference has become widely used in the analysis of genome-scale multilocus and SNP datasets when the goal is inference of a species-level phylogeny. However, numerous evolutionary processes are known to violate the assumptions of a coalescence-only model and complicate inference of the species tree. One such process is hybrid speciation, in which a species shares its ancestry with two distinct species. Although many methods have been proposed to detect hybrid speciation, only a few have considered both hybridization and coalescence in a unified framework, and these are generally limited to the setting in which putative hybrid species must be identified in advance. RESULTS:Here we propose a method that can examine genome-scale data for a large number of taxa and detect those taxa that may have arisen via hybridization, as well as their potential "parental" taxa. The method is based on a model that considers both coalescence and hybridization together, and uses phylogenetic invariants to construct a test that scales well in terms of computational time for both the number of taxa and the amount of sequence data. We test the method using simulated data for up 20 taxa and 100,000bp, and find that the method accurately identifies both recent and ancient hybrid species in less than 30 s. We apply the method to two empirical datasets, one composed of Sistrurus rattlesnakes for which hybrid speciation is not supported by previous work, and one consisting of several species of Heliconius butterflies for which some evidence of hybrid speciation has been previously found. CONCLUSIONS:The proposed method is powerful for detecting hybridization for both recent and ancient hybridization events. The computations required can be carried out rapidly for a large number of sequences using genome-scale data, and the method is appropriate for both SNP and multilocus data.
SUBMITTER: Kubatko LS
PROVIDER: S-EPMC6543680 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA