Project description:BackgroundThe ROX index (ratio of pulse oximetry/FIO2 to respiratory rate) has been validated to predict high flow nasal cannula therapy (HFNC) outcomes in patients with pneumonia. We evaluated a modified ROX index incorporating heart rate (HR) in patients initiated on HFNC for acute hypoxemic respiratory failure and as a preventative treatment following planned extubation.MethodsWe performed a prospective observational cohort study of 145 patients treated with HFNC. ROX-HR index was defined as the ratio of ROX index over HR (beats/min), multiplied by a factor of 100. Evaluation was performed using area under the receiving operating characteristic curve (AUROC) and cutoffs assessed for prediction of HFNC failure: defined as the need for mechanical ventilation.ResultsNinety-nine (68.3%) and 46 (31.7%) patients were initiated on HFNC for acute hypoxemic respiratory failure and following a planned extubation, respectively. The majority (86.9%) of patients had pneumonia as a primary diagnosis, and 85 (56.6%) patients were immunocompromised. Sixty-one (42.1%) patients required intubation (HFNC failure). Amongst patients on HFNC for acute respiratory failure, HFNC failure was associated with a lower ROX and ROX-HR index recorded at time points between 1 and 48 h. Within the first 12 h, both indices performed with the highest AUROC at 10 h as follows: 0.723 (95% CI 0.605-0.840) and 0.739 (95% CI 0.626-0.853) for the ROX and ROX-HR index respectively. A ROX-HR index of > 6.80 was significantly associated with a lower risk of HFNC failure (hazard ratio 0.301 (95% CI 0.143-0.663)) at 10 h. This association was also observed at 2, 6, 18, and 24h, even with correction for potential confounding factors. For HFNC initiated post-extubation, only the ROX-HR index remained significantly associated with HFNC failure at all recorded time points between 1 and 24 h. A ROX-HR > 8.00 at 10 h was significantly associated with a lower risk of HFNC failure (hazard ratio 0.176 (95% CI 0.051-0.604)).ConclusionWhile validation studies are required, the ROX-HR index appears to be a promising tool for early identification of treatment failure in patients initiated on HFNC for acute hypoxemic respiratory failure or as a preventative treatment after a planned extubation.
Project description:BackgroundDelayed intubation is associated with high mortality. There is a lack of objective criteria to decide the time of intubation. We assessed a recently described combined oxygenation index (ROX index) to predict intubation in immunocompromised patients. The study is a secondary analysis of randomized trials in immunocompromised patients, including all patients who received high-flow nasal cannula (HFNC). The first objective was to evaluate the accuracy of the ROX index to predict intubation for patients with acute respiratory failure.ResultsIn the study, 302 patients received HFNC. Acute respiratory failure was mostly related to pneumonia (n = 150, 49.7%). Within 2 (1-3) days, 115 (38.1%) patients were intubated. The ICU mortality rate was 27.4% (n = 83). At 6 h, the ROX index was lower for patients who needed intubation compared with those who did not [4.79 (3.69-7.01) vs. 6.10 (4.48-8.68), p < 0.001]. The accuracy of the ROX index to predict intubation was poor [AUC = 0.623 (0.557-0.689)], with low performance using the threshold previously found (4.88). In multivariate analysis, a higher ROX index was still independently associated with a lower intubation rate (OR = 0.89 [0.82-0.96], p = 0.04).ConclusionA ROX index greater than 4.88 appears to have a poor ability to predict intubation in immunocompromised patients with acute respiratory failure, although it remains highly associated with the risk of intubation and may be useful to stratify such risk in future studies.
Project description:COVID-19 patients with acute hypoxemic respiratory failure (AHRF) benefit from high flow nasal cannula (HFNC) oxygen therapy. However, delays in initiating invasive ventilation after HFNC failure are associated with poorer outcomes. The respiratory oxygenation (ROX) index, combining SpO2/FiO2 and respiratory rate, can predict HFNC failure. This meta-analysis evaluated the optimal ROX index cut-offs in predicting HFNC failure among COVID-19 patients at different measurement timings and clinical settings. Three databases were searched for eligible papers. From each study, we reconstructed the confusion matrices at different cut-offs, fitted linear mixed models to estimate the ROX index distribution function, and derived the area under the summary receiver operator characteristic curve (sAUC) and optimal cut-offs to predict HFNC failure. 24 studies containing 4790 patients were included. Overall sAUC was 0.771 (95% CI: 0.666-0.847) (optimal cut-off: 5.23, sensitivity: 0.732, specificity: 0.690). The cut-off values to achieve 80%, 90% sensitivity, 80%, 90% specificity were 5.70, 6.69, 4.45, 3.37, respectively. We stratified the analysis by ROX measurement time and estimated optimal cut-offs and cut-offs to achieve 80% sensitivity and specificity. For 2-6 h and 6-12 h post-HFNC initiation, we propose the use of 80% specific cut-offs to rule in HFNC failure of < 5.33 and < 3.69, respectively. For 12-24 h post-HFNC initiation, we propose the use of the 80% sensitive cut-off of > 6.07 to rule out HFNC failure. Our analysis confirms the overall utility of the ROX index in risk stratification of COVID-19 patients with AHRF receiving HFNC and provides potentially useful cut-offs for different times from HFNC initiation.
Project description:IntroductionPatients with coronavirus disease 2019 (COVID-19) can develop rapidly progressive respiratory failure. Ventilation strategies during the COVID-19 pandemic seek to minimize patient mortality. In this study we examine associations between the availability of emergency department (ED)-initiated high-flow nasal cannula (HFNC) for patients presenting with COVID-19 respiratory distress and outcomes, including rates of endotracheal intubation (ETT), mortality, and hospital length of stay.MethodsWe performed a retrospective, non-concurrent cohort study of patients with COVID-19 respiratory distress presenting to the ED who required HFNC or ETT in the ED or within 24 hours following ED departure. Comparisons were made between patients presenting before and after the introduction of an ED-HFNC protocol.ResultsUse of HFNC was associated with a reduced rate of ETT in the ED (46.4% vs 26.3%, P <0.001) and decreased the cumulative proportion of patients who required ETT within 24 hours of ED departure (85.7% vs 32.6%, P <0.001) or during their entire hospitalization (89.3% vs 48.4%, P <0.001). Using HFNC was also associated with a trend toward increased survival to hospital discharge; however, this was not statistically significant (50.0% vs 68.4%, P = 0.115). There was no impact on intensive care unit or hospital length of stay. Demographics, comorbidities, and illness severity were similar in both cohorts.ConclusionsThe institution of an ED-HFNC protocol for patients with COVID-19 respiratory distress was associated with reductions in the rate of ETT. Early initiation of HFNC is a promising strategy for avoiding ETT and improving outcomes in patients with COVID-19.
Project description:BackgroundHeated humidified high-flow nasal cannula (HFNC) has gained popularity recently and is considered a standard respiratory support tool for pediatric patients with acute respiratory distress. However, data are limited on the bedside parameters that can predict HFNC failure in pediatric patients.PurposeTo evaluate the performance of SpO2/FiO2 (SF) ratio, pediatric respiratory rate-oxygenation (pROX) index, and clinical respiratory score (CRS), for predicting the HFNC outcomes.MethodsThis prospective observational study included 1- month to 15-year-old patients with acute respiratory distress who required HFNC support. The HFNC setting, vital signs, CRS, and treatment outcomes were recorded. Data were analyzed to determine the predictors of HFNC failure.ResultsEighty-two children participated in the study, 16 of whom (19.5%) did not respond to HFNC treatment (failure group). Pneumonia was the main reason for intubation (62.5%). Predictors of HFNC failure at 12 hours were: SF index ≤166 (sensitivity, 62.5%; specificity, 87.8%; area under the curve [AUC], 0.75), pROX index <132 (sensitivity, 68.7%; specificity, 84.8%; AUC, 0.77), and CRS ≥6 (sensitivity, 87.5%; specificity, 96.9%; AUC, 0.92).ConclusionThe CRS was the most accurate predictor of HFNC failure in pediatric patients. A CRS ≥ 6 at 12 hours after HFNC initiation and pROX, a newly modified parameter, are helpful indicators of HFNC failure.
Project description:BackgroundThis study was designed to explore the early predictive value of the respiratory rate oxygenation (ROX) index modified by PaO2 (mROX) in high-flow nasal cannula (HFNC) therapy in patients with acute hypoxemia respiratory failure (AHRF).MethodSeventy-five patients with AHRF treated with HFNC were retrospectively reviewed. Respiratory parameters at baseline and 2 h after HFNC initiation were analyzed. The predictive value of the ROX (ratio of pulse oximetry/FIO2 to respiratory rate) and mROX (ratio of arterial oxygen /FIO2 to respiratory rate) indices with two variations by adding heart rate to each index (ROX-HR and mROX-HR) was evaluated.ResultsHFNC therapy failed in 24 patients, who had significantly higher intensive care unit (ICU) mortality and longer ICU stay. Both the ROX and mROX indices at 2 h after HFNC initiation can predict the risk of intubation after HFNC. Two hours after HFNC initiation, the mROX index had a higher area under the receiver operating characteristic curve (AUROC) for predicting HFNC success than the ROX index. Besides, baseline mROX index of greater than 7.1 showed a specificity of 100% for HFNC success.ConclusionThe mROX index may be a suitable predictor of HFNC therapy outcomes at the early phase in patients with AHRF.
Project description:BackgroundThe respiratory rate-oxygenation (ROX) index has been increasingly applied to predict the outcome of high-flow nasal cannula (HFNC) in pneumonia patients with acute hypoxemic respiratory failure (AHRF). However, its diagnostic accuracy for the HFNC outcome has not yet been systematically assessed. This meta-analysis sought to evaluate the predictive performance of the ROC index for the successful weaning from HFNC in pneumonia patients with AHRF.MethodsA literature search was conducted on electronic databases through February 12, 2022, to retrieve studies that investigated the diagnostic accuracy of the ROC index for the outcome of HFNC application in pneumonia patients with AHRF. The area under the hierarchical summary receiver operating characteristic curve (AUHSROC) was estimated as the primary measure of diagnostic accuracy due to the varied cutoff values of the index. We observed the distribution of the cutoff values and estimated the optimal threshold with corresponding 95% confidential interval (CI).ResultsThirteen observational studies comprising 1751 patients were included, of whom 1003 (57.3%) successfully weaned from HFNC. The ROC index exhibits good performance for predicting the successful weaning from HFNC in pneumonia patients with AHRF, with an AUHSROC of 0.81 (95% CI 0.77-0.84), a pooled sensitivity of 0.71 (95% CI 0.64-0.78), and a pooled specificity of 0.78 (95% CI 0.70-0.84). The cutoff values of the ROX index were nearly conically symmetrically distributed; most data were centered between 4.5 and 6.0, and the mean and median values were 4.8 (95% CI 4.2-5.4) and 5.3 (95% CI 4.2-5.5), respectively. Moreover, the AUHSROC in the subgroup of measurement within 6 h after commencing HFNC was comparable to that in the subgroup of measurement during 6-12 h. The stratified analyses also suggested that the ROC index was a reliable predictor of HFNC success in pneumonia patients with coronavirus disease 2019.ConclusionsIn pneumonia patients with AHRF, the ROX index measured within 12 h after HFNC initiation is a good predictor of successful weaning from HFNC. The range of 4.2-5.4 may represent the optimal confidence interval for the prediction of HFNC outcome.
Project description:BackgroundsHigh flow nasal cannula (HFNC) is an alternative therapy for acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). This study aimed first to describe outcomes of patients suffering from COVID-19-related ARDS treated with HFNC; secondly to evaluate safety of HFNC (patients and healthcare workers) and compare patients according to respiratory outcome.MethodsA retrospective cohort was conducted in French general hospital intensive care unit (ICU). Patients were included if receiving HFNC for hypoxemia (saturation pulse oxygen (SpO2) <92% under oxygen ⩾6 L/min) associated with ARDS and positive SARS-CoV-2 polymerase chain reaction (PCR). Main clinical characteristics and outcomes are described in patients: (a) with do not intubate order (HFNC-DNIO); (b) who did not need intubation (HFNC-only); and (c) eventually intubated (HFNC-intubation). Medians are presented with (1st-3rd) interquartile range.ResultsFrom 26 February to 30 June 2020, 46 patients of median age 75 (70-79) years were included. In the HFNC-DNIO group (n = 11), partial arterial oxygen pressure (PaO2)/inhaled fraction of oxygen (FiO2) ratio median worst PaO2/FiO2 ratio was 109 (102-172) and hospital mortality was 54.5%. Except the HFNC-DNIO patients (n = 35), 20 patients (57%) were eventually intubated (HFNC-intubation group) and 15 were only treated by HFNC (HFNC-only). HFNC-intubation patients presented higher worst respiratory rates per minute in ICU [37 (34-41) versus 33 (24-34) min, p < 0.05] and worsened ICU admission PaO2/FiO2 ratios [121 (103-169) versus 191 (162-219), p < 0.001] compared with HFNC-only patients. Hospital mortality was 35% (n = 7/20) in HFNC-intubation group, 0% in HFNC-only group with a global mortality of these two groups of 20% (n = 7/35). Among tests performed in healthcare workers, 1/12 PCR in symptomatic healthcare workers and 1.8% serologies in asymptomatic healthcare workers were positive. After review of each case, COVID-19 was likely to be acquired outside hospital.ConclusionsHFNC seems to be useful for COVID-19-related ARDS and safe for healthcare workers. ARDS severity with PaO2/FiO2 <150 associated with respiratory rate >35/min could be regarded as a predictor of intubation.The reviews of this paper are available via the supplemental material section.
Project description:Background: Continuous positive airway pressure (CPAP) has been associated with a lower risk of treatment failure than high-flow nasal cannula (HFNC) in pediatric patients with respiratory distress and severe hypoxemia. However, the publication of new trials on children younger than 2 years warrants a review and updated meta-analysis of the evidence. Methods: We conducted a systematic search in the PubMed, Scopus, and Google scholar databases for randomized controlled trials (RCTs) in pediatric patients with acute respiratory distress that examined outcomes of interest by the two usual management modalities (CPAP and HFNC). We used pooled adjusted relative risks (RRs) to present the strength of association for categorical outcomes and weighted mean differences (WMDs) for continuous outcomes. Results: We included data from six articles in the meta-analysis. The quality of the studies was deemed good. Included studies had infants with either acute viral bronchiolitis or pneumonia. Compared to CPAP, HFNC treatment carried a significantly higher risk of treatment failure [RR, 1.45; 95% CI, 1.06 to 1.99; I 2 = 0.0%, n = 6]. Patients receiving HFNC had a lower risk of adverse events, mainly nasal trauma [RR, 0.30; 95% CI, 0.14 to 0.62; I 2 = 0.0%, n = 2] than the others. The risk of mortality [RR, 3.33; 95% CI, 0.95, 11.67; n = 1] and need for intubation [RR, 1.69; 95% CI, 0.97, 2.94; I 2 = 0.0%, n = 5] were statistically similar between the two management strategies; however, the direction of the pooled effect sizes is indicative of a nearly three times higher mortality and two times higher risk of intubation in those receiving HFNC. We found no statistically significant differences between the two management modalities in terms of modified woods clinical asthma score (M-WCAS; denoting severity of respiratory distress) and hospitalization length (days). Patients receiving HFNC had the time to treatment failure reduced by approximately 3 h [WMD, -3.35; 95% CI, -4.93 to -1.76; I 2 = 0.0%, n = 2] compared to those on CPAP. Conclusions: Among children with respiratory distress younger than 2 years, HFNC appears to be associated with higher risk of treatment failure and possibly, an increased risk of need for intubation and mortality. Adequately powered trials are needed to confirm which management strategy is better.
Project description:BackgroundThe use of high-flow nasal therapy (HFNT) to treat COVID-19 pneumonia has been greatly debated around the world due to concerns about increased health care worker transmission and delays in invasive mechanical ventilation (IMV). Herein, we analyzed the utility of the noninvasive ROX (ratio of oxygen saturation) index to predict the need for and timing of IMV.ObjectiveThis study aimed to assess whether the ROX index can be a useful score to predict intubation and IMV in patients receiving HFNT as treatment for COVID-19-related hypoxemic respiratory failure.MethodsThis is a retrospective cohort analysis of 129 consecutive patients with COVID-19 admitted to Temple University Hospital in Philadelphia, PA, from March 10, 2020, to May 17, 2020. This is a single-center study conducted in designated COVID-19 units (intensive care unit and other wards) at Temple University Hospital. Patients with moderate and severe hypoxemic respiratory failure treated with HFNT were included in the study. HFNT patients were divided into two groups: HFNT only and intubation (ie, patients who progressed from HFNT to IMV). The primary outcome was the value of the ROX index in predicting the need for IMV. Secondary outcomes were mortality, rate of intubation, length of stay, and rate of nosocomial infections in a cohort treated initially with HFNT.ResultsOf the 837 patients with COVID-19, 129 met the inclusion criteria. The mean age was 60.8 (SD 13.6) years, mean BMI was 32.6 (SD 8) kg/m², 58 (45%) were female, 72 (55.8%) were African American, 40 (31%) were Hispanic, and 48 (37.2%) were nonsmokers. The mean time to intubation was 2.5 (SD 3.3) days. An ROX index value of less than 5 at HFNT initiation was suggestive of progression to IMV (odds ratio [OR] 2.137, P=.052). Any further decrease in ROX index value after HFNT initiation was predictive of intubation (OR 14.67, P<.001). Mortality was 11.2% (n=10) in the HFNT-only group versus 47.5% (n=19) in the intubation group (P<.001). Mortality and need for pulmonary vasodilators were higher in the intubation group.ConclusionsThe ROX index helps decide which patients need IMV and may limit eventual morbidity and mortality associated with the progression to IMV.