Unknown

Dataset Information

0

Deep sequencing of a recurrent oligodendroglioma and the derived xenografts reveals new insights into the evolution of human oligodendroglioma and candidate driver genes.


ABSTRACT: We previously reported the establishment of a rare xenograft derived from a recurrent oligodendroglioma with 1p/19q codeletion. Here, we analyzed in detail the exome sequencing datasets from the recurrent oligodendroglioma (WHO grade III, recurrent O2010) and the first-generation xenograft (xenograft1). Somatic SNVs and small InDels (n = 80) with potential effects at the protein level in recurrent O2010 included variants in IDH1 (NM_005896:c.395G>A; p. Arg132His), FUBP1 (NM_003902:c.1307_1310delTAGA; p.Ile436fs), and CIC (NM_015125:c.4421T>G; p.Val1474Gly). All but 2 of these 80 variants were also present in xenograft1, along with 7 new variants. Deep sequencing of the 87 SNVs and InDels in the original tumor (WHO grade III, primary O2005) and in a second-generation xenograft (xenograft2) revealed that only 11 variants, including IDH1 (NM_005896:c.395G>A; p. Arg132His), PSKH1 (NM_006742.2:c.650G>A; p.Arg217Gln), and SNX12 (NM_001256188:c.470G>A; p.Arg157His), along with a variant in the TERT promoter (C250T, NM_198253.2: c.-146G>A), were already present in primary O2005. Allele frequencies of the 11 variants were calculated to assess their potential as putative driver genes. A missense change in NDST4 (NM_022569:c.2392C>G; p.Leu798Val) on 4q exhibited an increasing allele frequency (~ 20%, primary O2005, 80%, recurrent O2010 and 100%, xenograft1), consistent with a selection event. Sequencing of NDST4 in a cohort of 15 oligodendrogliomas, however, revealed no additional cases with potential protein disrupting variants. Our analysis illuminated a tumor evolutionary series of events, which included 1p/19q codeletion, IDH1 R132H, and TERT C250T as early events, followed by loss of function of NDST4 and mutations in FUBP1 and CIC as late events.

SUBMITTER: Exner ND 

PROVIDER: S-EPMC6557204 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deep sequencing of a recurrent oligodendroglioma and the derived xenografts reveals new insights into the evolution of human oligodendroglioma and candidate driver genes.

Exner Nadin D ND   Valenzuela Jaime Alberto Campos JAC   Abou-El-Ardat Khalil K   Miletic Hrvoje H   Huszthy Peter C PC   Radehaus Petra M PM   Schröck Evelin E   Bjerkvig Rolf R   Kaderali Lars L   Klink Barbara B   Nigro Janice M JM  

Oncotarget 20190604 38


We previously reported the establishment of a rare xenograft derived from a recurrent oligodendroglioma with 1p/19q codeletion. Here, we analyzed in detail the exome sequencing datasets from the recurrent oligodendroglioma (WHO grade III, recurrent O<sup>2010</sup>) and the first-generation xenograft (xenograft<sup>1</sup>). Somatic SNVs and small InDels (<i>n</i> = 80) with potential effects at the protein level in recurrent O<sup>2010</sup> included variants in <i>IDH1</i> (NM_005896:c.395G>A;  ...[more]

Similar Datasets

| S-EPMC6649856 | biostudies-literature
| S-EPMC4296010 | biostudies-literature
| S-EPMC5659952 | biostudies-literature
| S-EPMC5453970 | biostudies-literature
| S-EPMC5419488 | biostudies-literature
2015-06-15 | E-MTAB-2767 | biostudies-arrayexpress
| S-EPMC4383019 | biostudies-literature
| S-EPMC6603298 | biostudies-literature
| S-EPMC11007544 | biostudies-literature
| S-EPMC3678719 | biostudies-literature