Copper-Induced Expression of a Transmissible Lipoprotein Intramolecular Transacylase Alters Lipoprotein Acylation and the Toll-Like Receptor 2 Response to Listeria monocytogenes.
Ontology highlight
ABSTRACT: Bacterial lipoproteins are globular proteins anchored to the extracytoplasmic surfaces of cell membranes through lipidation at a conserved N-terminal cysteine. Lipoproteins contribute to an array of important cellular functions for bacteria, as well as being a focal point for innate immune system recognition through binding to Toll-like receptor 2 (TLR2) heterodimer complexes. Although lipoproteins are conserved among nearly all classes of bacteria, the presence and type of α-amino-linked acyl chain are highly variable and even strain specific within a given bacterial species. The reason for lyso-lipoprotein formation and N-acylation variability in general is presently not fully understood. In Enterococcus faecalis, lipoproteins are anchored by an N-acyl-S-monoacyl-glyceryl cysteine (lyso form) moiety installed by a chromosomally encoded lipoprotein intramolecular transacylase (Lit). Here, we describe a mobile genetic element common to environmental isolates of Listeria monocytogenes and Enterococcus spp. encoding a functional Lit ortholog (Lit2) that is cotranscribed with several well-established copper resistance determinants. Expression of Lit2 is tightly regulated, and induction by copper converts lipoproteins from the diacylglycerol-modified form characteristic of L. monocytogenes type strains to the α-amino-modified lyso form observed in E. faecalis Conversion to the lyso form through either copper addition to media or constitutive expression of lit2 decreases TLR2 recognition when using an activated NF-κB secreted embryonic alkaline phosphatase reporter assay. While lyso formation significantly diminishes TLR2 recognition, lyso-modified lipoprotein is still predominantly recognized by the TLR2/TLR6 heterodimer.IMPORTANCE The induction of lipoprotein N-terminal remodeling in response to environmental copper in Gram-positive bacteria suggests a more general role in bacterial cell envelope physiology. N-terminal modification by lyso formation, in particular, simultaneously modulates the TLR2 response in direct comparison to their diacylglycerol-modified precursors. Thus, use of copper as a frontline antimicrobial control agent and ensuing selection raises the potential of diminished innate immune sensing and enhanced bacterial virulence.
SUBMITTER: Armbruster KM
PROVIDER: S-EPMC6560142 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA