Unknown

Dataset Information

0

The Size Effect of TiO2 Hollow Microspheres on Photovoltaic Performance of ZnS/CdS Quantum Dots Sensitized Solar Cell.


ABSTRACT: Size controllable TiO2 hollow microspheres (HMS) were synthesized by a carbonaceous spheres (CS) template method. Based on TiO2 HMS, the ZnS/CdS quantum dots (QDs) were loaded to form a ZnS/CdS@TiO2 HMS photoanode for quantum dots sensitized solar cell (QDSSC). The size effects of TiO2 HMS on photovoltaic performance were investigated, and showed that TiO2 HMS with sizes ~560 nm produced the best short-circuit current density (Jsc) of 8.02 mA cm-2 and highest power conversion efficiency (PCE) of 1.83%, showing a better photovoltaic performance than any other QDSSCs based on TiO2 HMS with size ~330 nm, ~400 nm, and ~700 nm. The improvement of photovoltaic performance based on ~560 nm TiO2 HMS which can be ascribed to the enhanced light harvesting efficiency caused by multiple light reflection and strong light scattering of TiO2 HMS. The ultraviolet-visible (UV-vis) spectra and incident photo to the current conversion efficiency (IPCE) test results confirmed that the size of TiO2 HMS has an obvious effect on light harvesting efficiency. A further application of ~560 nm TiO2 HMS in ZnS/PbS/CdS QDSSC can improve the PCE to 2.73%, showing that TiO2 HMS has wide applicability in the design of QDSSCs.

SUBMITTER: Li Z 

PROVIDER: S-EPMC6566662 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Size Effect of TiO<sub>2</sub> Hollow Microspheres on Photovoltaic Performance of ZnS/CdS Quantum Dots Sensitized Solar Cell.

Li Zhen Z   Yu Libo L  

Materials (Basel, Switzerland) 20190515 10


Size controllable TiO<sub>2</sub> hollow microspheres (HMS) were synthesized by a carbonaceous spheres (CS) template method. Based on TiO<sub>2</sub> HMS, the ZnS/CdS quantum dots (QDs) were loaded to form a ZnS/CdS@TiO<sub>2</sub> HMS photoanode for quantum dots sensitized solar cell (QDSSC). The size effects of TiO<sub>2</sub> HMS on photovoltaic performance were investigated, and showed that TiO<sub>2</sub> HMS with sizes ~560 nm produced the best short-circuit current density (J<sub>sc</sub>  ...[more]

Similar Datasets

| S-EPMC6566938 | biostudies-literature
| S-EPMC6647995 | biostudies-literature
| S-EPMC6956303 | biostudies-literature