Unknown

Dataset Information

0

Detection of Ampicillin-Resistant E. coli Using Novel Nanoprobe-Combined Fluorescence In Situ Hybridization.


ABSTRACT: Antibiotic-resistant bacteria present a global threat because the infections they cause are difficult to treat. Therefore, it is highly important to develop advanced methods for the identification of antibiotic resistance gene in the virulent bacteria. Here, we report the development of novel nanoprobes for fluorescence in situ hybridization (FISH) and the application of the nanoprobe to the detection of ampicillin-resistant Escherichia coli. The nanoprobe for FISH was synthesized by the modified sol-gel chemistry and the synthesized nanoprobe provided strong fluorescent signals and pH stability even under natural light condition. For the double-identification of bacteria species and ampicillin-resistance with a single probe in situ, the nanoprobes were conjugated to the two kinds of biotinylated probe DNAs; one for E. coli-species specific gene and the other for a drug-resistant gene. By using the nanoprobe-DNA conjugants, we successfully detected the ampicillin-resistant E. coli through the FISH technique. This result suggests the new insight into light stable FISH application of the nanoprobe for a pathogenic antibiotic-resistance bacterium.

SUBMITTER: Lee WS 

PROVIDER: S-EPMC6567190 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Detection of Ampicillin-Resistant <i>E. coli</i> Using Novel Nanoprobe-Combined Fluorescence In Situ Hybridization.

Lee Wang Sik WS   Lee Soohyun S   Kang Taejoon T   Ryu Choong-Min CM   Jeong Jinyoung J  

Nanomaterials (Basel, Switzerland) 20190516 5


Antibiotic-resistant bacteria present a global threat because the infections they cause are difficult to treat. Therefore, it is highly important to develop advanced methods for the identification of antibiotic resistance gene in the virulent bacteria. Here, we report the development of novel nanoprobes for fluorescence in situ hybridization (FISH) and the application of the nanoprobe to the detection of ampicillin-resistant <i>Escherichia coli</i>. The nanoprobe for FISH was synthesized by the  ...[more]

Similar Datasets

| S-EPMC3507901 | biostudies-literature
| S-EPMC5478537 | biostudies-literature
| S-EPMC6081265 | biostudies-literature
| S-EPMC4384178 | biostudies-literature
2013-03-14 | GSE45146 | GEO
2013-06-28 | GSE34137 | GEO
| S-EPMC6504678 | biostudies-literature
| S-EPMC3194811 | biostudies-literature
| S-EPMC3811206 | biostudies-literature
| S-EPMC2570288 | biostudies-literature