Unknown

Dataset Information

0

Novel Nucleic Acid Binding Small Molecules Discovered Using DNA-Encoded Chemistry.


ABSTRACT: Inspired by the many reported successful applications of DNA-encoded chemical libraries in drug discovery projects with protein targets, we decided to apply this platform to nucleic acid targets. We used a 120-billion-compound set of 33 distinct DNA-encoded chemical libraries and affinity-mediated selection to discover binders to a panel of DNA targets. Here, we report the successful discovery of small molecules that specifically interacted with DNA G-quartets, which are stable structural motifs found in G-rich regions of genomic DNA, including in the promoter regions of oncogenes. For this study, we chose the G-quartet sequence found in the c-myc promoter as a primary target. Compounds enriched using affinity-mediated selection against this target demonstrated high-affinity binding and high specificity over DNA sequences not containing G-quartet motifs. These compounds demonstrated a moderate ability to discriminate between different G-quartet motifs and also demonstrated activity in a cell-based assay, suggesting direct target engagement in the cell. DNA-encoded chemical libraries and affinity-mediated selection are uniquely suited to discover binders to targets that have no inherent activity outside of a cellular context, and they may also be of utility in other nucleic acid structural motifs.

SUBMITTER: Litovchick A 

PROVIDER: S-EPMC6572338 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel Nucleic Acid Binding Small Molecules Discovered Using DNA-Encoded Chemistry.

Litovchick Alexander A   Tian Xia X   Monteiro Michael I MI   Kennedy Kaitlyn M KM   Guié Marie-Aude MA   Centrella Paolo P   Zhang Ying Y   Clark Matthew A MA   Keefe Anthony D AD  

Molecules (Basel, Switzerland) 20190527 10


Inspired by the many reported successful applications of DNA-encoded chemical libraries in drug discovery projects with protein targets, we decided to apply this platform to nucleic acid targets. We used a 120-billion-compound set of 33 distinct DNA-encoded chemical libraries and affinity-mediated selection to discover binders to a panel of DNA targets. Here, we report the successful discovery of small molecules that specifically interacted with DNA G-quartets, which are stable structural motifs  ...[more]

Similar Datasets

| S-EPMC4761111 | biostudies-literature
| S-EPMC6511493 | biostudies-literature
| S-EPMC2805920 | biostudies-literature
| S-EPMC4926330 | biostudies-literature
| S-EPMC10254314 | biostudies-literature
| S-EPMC9262588 | biostudies-literature
| S-EPMC7958298 | biostudies-literature
| S-EPMC8456907 | biostudies-literature
| S-EPMC7434487 | biostudies-literature
| S-EPMC5113211 | biostudies-literature