Project description:A major limitation in the pharmacological treatment of pulmonary arterial hypertension (PAH) is the lack of pulmonary vascular selectivity. Recent studies have identified a tissue-penetrating homing peptide, CARSKNKDC (CAR), which specifically homes to hypertensive pulmonary arteries but not to normal pulmonary vessels or other tissues. Some tissue-penetrating vascular homing peptides have a unique ability to facilitate transport of co-administered drugs into the targeted cells/tissues without requiring physical conjugation of the drug to the peptide (bystander effect). We tested the hypothesis that co-administered CAR would selectively enhance the pulmonary vascular effects of i.v. vasodilators in Sugen5416/hypoxia/normoxia-exposed PAH rats. Systemically administered CAR was predominantly detected in cells of remodeled pulmonary arteries. Intravenously co-administered CAR enhanced pulmonary, but not systemic, effects of the vasodilators, fasudil and imatinib, in PAH rats. CAR increased lung tissue imatinib concentration in isolated PAH lungs without increasing pulmonary vascular permeability. Sublingual CAR was also effective in selectively enhancing the pulmonary vasodilation by imatinib and sildenafil. Our results suggest a new paradigm in the treatment of PAH, using an i.v./sublingual tissue-penetrating homing peptide to selectively augment pulmonary vascular effects of nonselective drugs without the potentially problematic conjugation process. CAR may be particularly useful as an add-on therapy to selectively enhance the pulmonary vascular efficacy of any ongoing drug treatment in patients with PAH.
Project description:Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary vasculature associated with elevated pulmonary vascular resistance. Despite recent advances in the treatment of PAH, with eight approved clinical therapies and additional therapies undergoing clinical trials, PAH remains a serious life-threatening condition. The lack of pulmonary vascular selectivity and associated systemic adverse effects of these therapies remain the main obstacles to successful treatment. Peptide-mediated drug delivery that specifically targets the vasculature of PAH lungs may offer a solution to the lack of drug selectivity. Herein, we show highly selective targeting of rat PAH lesions by a novel cyclic peptide, CARSKNKDC (CAR). Intravenous administration of CAR peptide resulted in intense accumulation of the peptide in monocrotaline-induced and SU5416/hypoxia-induced hypertensive lungs but not in healthy lungs or other organs of PAH rats. CAR homed to all layers of remodeled pulmonary arteries, ie, endothelium, neointima, medial smooth muscle, and adventitia, in the hypertensive lungs. CAR also homed to capillary vessels and accumulated in the interstitial space of the PAH lungs, manifesting its extravasation activity. These results demonstrated the remarkable ability of CAR to selectively target PAH lung vasculature and effectively penetrate and spread throughout the diseased lung tissue. These results suggest the clinical utility of CAR in the targeted delivery of therapeutic compounds and imaging probes to PAH lungs.
Project description:Pulmonary arterial hypertension is a devastating disease with high mortality. Familial cases of pulmonary arterial hypertension are usually characterized by autosomal dominant transmission with reduced penetrance, and some familial cases have unknown genetic causes.We studied a family in which multiple members had pulmonary arterial hypertension without identifiable mutations in any of the genes known to be associated with the disease, including BMPR2, ALK1, ENG, SMAD9, and CAV1. Three family members were studied with whole-exome sequencing. Additional patients with familial or idiopathic pulmonary arterial hypertension were screened for the mutations in the gene that was identified on whole-exome sequencing. All variants were expressed in COS-7 cells, and channel function was studied by means of patch-clamp analysis.We identified a novel heterozygous missense variant c.608 G?A (G203D) in KCNK3 (the gene encoding potassium channel subfamily K, member 3) as a disease-causing candidate gene in the family. Five additional heterozygous missense variants in KCNK3 were independently identified in 92 unrelated patients with familial pulmonary arterial hypertension and 230 patients with idiopathic pulmonary arterial hypertension. We used in silico bioinformatic tools to predict that all six novel variants would be damaging. Electrophysiological studies of the channel indicated that all these missense mutations resulted in loss of function, and the reduction in the potassium-channel current was remedied by the application of the phospholipase inhibitor ONO-RS-082.Our study identified the association of a novel gene, KCNK3, with familial and idiopathic pulmonary arterial hypertension. Mutations in this gene produced reduced potassium-channel current, which was successfully remedied by pharmacologic manipulation. (Funded by the National Institutes of Health.)
Project description:Pulmonary arterial hypertension (PAH) is a severe and progressive vascular disease characterized by pulmonary vascular remodeling, proliferation, and inflammation. Despite the availability of effective treatments, PAH may culminate in right ventricular failure and death. Currently approved medications act through three well-characterized pathways: the nitric oxide, endothelin, and prostacyclin pathways. Ongoing research efforts continue to expand our understanding of the molecular pathogenesis of this complex and multifactorial disease. Based on recent discoveries in the pathobiology of PAH, several new treatments are being developed and tested with the goal of modifying the disease process and ultimately improving the long-term prognosis.
Project description:The diagnosis and management of pulmonary arterial hypertension (PAH) includes several advances, such as a broader recognition of extrapulmonary vascular organ system involvement, validated point-of-care clinical assessment tools, and focus on the early initiation of multiple pharmacotherapeutics in appropriate patients. Indeed, a principal goal in PAH today is an early diagnosis for prompt initiation of treatment to achieve a minimal symptom burden; optimize the patient's biochemical, hemodynamic, and functional profile; and limit adverse events. To accomplish this end, clinicians must be familiar with novel risk factors and the revised hemodynamic definition for PAH. Fresh insights into the role of developmental biology (i.e., perinatal health) may also be useful for predicting incident PAH in early adulthood. Emergent or underused approaches to PAH management include a novel TGF-β ligand trap pharmacotherapy, remote pulmonary arterial pressure monitoring, next-generation imaging using inert gas-based magnetic resonance and other technologies, right atrial pacing, and pulmonary arterial denervation. These and other PAH state of the art advances are summarized here for the wider pulmonary medicine community.
Project description:IntroductionPulmonary arterial hypertension (PAH) is a rare disorder associated with abnormally elevated pulmonary pressures that, if untreated, leads to right heart failure and premature death. The goal of drug development for PAH is to develop effective therapies that halt, or ideally, reverse the obliterative vasculopathy that results in vessel loss and obstruction of blood flow to the lungs.Areas coveredThis review summarizes the current approach to candidate discovery in PAH and discusses the currently available drug discovery methods that should be implemented to prioritize targets and obtain a comprehensive pharmacological profile of promising compounds with well-defined mechanisms.Expert opinionTo improve the successful identification of leading drug candidates, it is necessary that traditional pre-clinical studies are combined with drug screening strategies that maximize the characterization of biological activity and identify relevant off-target effects that could hinder the clinical efficacy of the compound when tested in human subjects. A successful drug discovery strategy in PAH will require collaboration of clinician scientists with medicinal chemists and pharmacologists who can identify compounds with an adequate safety profile and biological activity against relevant disease mechanisms.
Project description:Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH), the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of severe PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH in its later stage, which may differ from the earlier stage of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH. Global profiles were determined in human lung tissue and compared across 11 normal and 12 severe pulmonary arterial hypertension patients. Using a combination of microarray and high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung.
Project description:Arterial pulmonary hypertension is a rare disease, with little knowledge regarding its etiology, and high mortality. Development of right and later on also left ventricular heart insufficiency, secondary to pulmonary hypertension, is a negative predictive factor. Genetic and molecular processes underlying left heart ventricle remodeling over the course of pulmonary hypertension remain unknown. In particular, there is no knowledge regarding the mechanisms of left heart ventricle atrophy which was completely avoided by researchers until recently.The aim of this study was to assess changes in protein abundance in left and right heart ventricle free wall of rats in monocrotaline model of PAH.
Project description:RationalePulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear.ObjectivesWe intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH.MethodsWe combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH).Measurements and main resultsWe discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling.ConclusionsThis study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.