Unknown

Dataset Information

0

Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations.


ABSTRACT:

Importance

Differential diagnosis of congenital vascular anomalies is challenging, and misdiagnosis is frequent. Vascular malformations are considered one of the most difficult vascular diseases to treat. A new imaging approach that visualizes anatomical features and quantitatively assesses molecular biomarkers noninvasively would aid diagnosis and monitoring of treatment response of vascular malformations.

Objective

To evaluate multispectral optoacoustic tomography (MSOT) for noninvasive assessment of molecular biomarkers for diagnosis and therapeutic monitoring of vascular malformations.

Design, setting, and participants

This pilot study examined 6 patients with arteriovenous malformation (AVM) and 6 patients with venous malformation (VM) diagnosed according to the classification system of the International Society for the Study of Vascular Anomalies. All patients underwent clinical hybrid MSOT/ultrasonographic (US) imaging before and after treatment at an interdisciplinary vascular malformations clinic by trained MSOT and US examiners. Examiners were blinded to the patient history and stage of disease. Data were collected from April 11 to 25, 2017, and analyzed from May 1 to October 31, 2017.

Interventions

Clinical hybrid MSOT/US imaging was performed before or within 1 week after endovascular embolization (for AVM) or percutaneous sclerotherapy (for VM).

Main outcomes and measures

Region-of-interest analysis of the lesion and contralateral healthy tissue revealed quantitative values for oxygenated (HbO2) and deoxygenated (HbR) hemoglobin by spectral unmixing of optoacoustic data acquired at multiple wavelengths. The HbO2:HbR ratio was calculated for healthy tissue and for AVM and VM before and after treatment.

Results

Twelve patients (9 female and 3 male; mean [SD] age, 23 [18] years; age range, 6-59 years) with vascular malformations (6 with AVMs and 6 with VMs) were included. Significantly higher HbO2:HbR ratios for AVMs (mean [SEM], 1.82?[0.08] vs 0.89?[0.03]; P?Conclusions and relevanceThis study suggests that different types of vascular malformations are clearly distinguished by MSOT-based, noninvasive assessment of hemoglobin levels in vascular malformations. The therapy effects found in this study could be instantly visualized, and this may offer a new tool for noninvasive diagnosis and monitoring of vascular malformations.

SUBMITTER: Masthoff M 

PROVIDER: S-EPMC6583374 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations.

Masthoff Max M   Helfen Anne A   Claussen Jing J   Karlas Angelos A   Markwardt Niklas A NA   Ntziachristos Vasilis V   Eisenblätter Michel M   Wildgruber Moritz M  

JAMA dermatology 20181201 12


<h4>Importance</h4>Differential diagnosis of congenital vascular anomalies is challenging, and misdiagnosis is frequent. Vascular malformations are considered one of the most difficult vascular diseases to treat. A new imaging approach that visualizes anatomical features and quantitatively assesses molecular biomarkers noninvasively would aid diagnosis and monitoring of treatment response of vascular malformations.<h4>Objective</h4>To evaluate multispectral optoacoustic tomography (MSOT) for non  ...[more]

Similar Datasets

| S-EPMC5771088 | biostudies-literature
| S-EPMC5450363 | biostudies-literature
| S-EPMC7723806 | biostudies-literature
| S-EPMC7264082 | biostudies-literature
| S-EPMC10362308 | biostudies-literature
| S-EPMC8075272 | biostudies-literature
| S-EPMC8422073 | biostudies-literature
| S-EPMC5505494 | biostudies-other
| S-EPMC5046137 | biostudies-literature
| S-EPMC6785793 | biostudies-literature