Thermosensitive Biodegradable Copper Sulfide Nanoparticles for Real-Time Multispectral Optoacoustic Tomography.
Ontology highlight
ABSTRACT: Although multifunctional inorganic nanoparticles have been extensively explored for effective cancer diagnosis and therapy, their clinical translation has been greatly impeded because of significant uptake in the reticuloendothelial system and concerns about potential toxicity. In this study, we uncovered the thermosensitive biodegradability of CuS nanoparticles, which have classically been considered as stable in bulk state. Polyethylene glycol (PEG)-coated CuS nanoparticles (CuS-PEG) were well preserved at 4 ºC but were rapidly degraded at 37 ºC within 1 week in both in vitro and in vivo tests. Furthermore, real-time multispectral optoacoustic tomography, which is more convenient and accurate than traditional ex vivo analysis, was successfully employed to noninvasively demonstrate the biodegradability of CuS-PEG nanoparticles and dynamically monitor their tumor imaging capacity. The temperature-dependent controllable degradation profile and excellent tumor retention of CuS-PEG nanoparticles endows them with great potential for clinical applications since it ensures that the nanoparticles remain intact during production, transportation, and storage but degrade and clear from the body at physiological temperature after accomplishing sufficient diagnosis and therapeutic operations.
Project description:The goal of this work was to demonstrate real-time tracking of in vivo nanoparticle concentrations utilizing multispectral optoacoustic tomography (MSOT). Combining the high contrast of optical imaging with the high resolution of ultrasound imaging, MSOT was utilized for non-invasive, real-time tomographic imaging of particles in mice and the results calibrated against analysis of tissue samples with electron paramagnetic resonance (EPR) spectroscopy. In a longitudinal study, the pharmacokinetics (pK) and biodistribution of Cyanine-7 (Cy7) conjugated superparamagnetic iron oxide nanoparticles (Cy7-SPIONs) were monitored after intravenous administration into the tail vein of healthy B6-albino mice. Concentrations of Cy7-SPIONs determined by MSOT image analysis of the liver, spleen, and kidneys showed excellent agreement with EPR data obtained on tissue samples ‒ validating MSOT's ability to quantify SPION concentrations with high spatial resolution. Both methods of analysis indicated highest accumulation of Cy7-SPIONs in the liver followed by the spleen, and negligible accumulation in the kidneys; SPION accumulation in organs with high concentrations of mononuclear phagocytic system macrophages is typical. Additionally, our study observed that particles modified with a 2 kDa polyethylene glycol (PEG) demonstrated significantly prolonged half-life in circulation compared to particles with 5 kDa PEG. The study demonstrates the potential of Cy7-SPIONs and MSOT for quantitative localization of magnetic nanoparticles in vivo, which can potentially be used to study their toxicity, quantify the efficacy of targeted drug delivery (e.g. within tumors), and their use as a multi-modal diagnostic agent to monitor disease progression.
Project description:Currently, several noninvasive modalities, including MRI and PET, are being investigated to identify early intestinal inflammation, longitudinally monitor disease status, or detect dysplastic changes in patients with inflammatory bowel disease. Here, we assess the applicability and utility of multispectral optoacoustic tomography (MSOT) in evaluating the presence and severity of colitis. Methods: C57B/6 mice were untreated or treated with Bacteroides fragilis and antibiotic-mediated depletion of intestinal flora to initiate colitis. Mice were imaged using MSOT to detect intestinal inflammation. Intestinal inflammation identified with MSOT was also confirmed using both colonoscopy and histology. Results: Mice with bacterial colitis demonstrated a temporally associated increase in mesenteric and colonic vascularity with an increase in mean signal intensity of oxygenated hemoglobin (P = 0.004) by MSOT 2 d after inoculation. These findings were significantly more prominent 7 d after inoculation, with increased mean signal intensity of oxygenated hemoglobin (P = 0.0002) and the development of punctate vascular lesions on the colonic surface, which corresponded to changes observed on colonoscopy as well as histology. Conclusion: With improvements in depth of tissue penetration, MSOT may hold potential as a sensitive, accurate, noninvasive imaging tool in the evaluation of patients with inflammatory bowel disease.
Project description:The continuous synthesis of biodegradable photothermal copper sulfide nanoparticles has been carried out with the aid of a microfluidic platform. A comparative physicochemical characterization of the resulting products from the microreactor and from a conventional batch reactor has been performed. The microreactor is able to operate in a continuous manner and with a 4-fold reduction in the synthesis times compared to that of the conventional batch reactor producing nanoparticles with the same physicochemical requirements. Biodegradation subproducts obtained under simulated physiological conditions have been identified, and a complete cytotoxicological analysis on different cell lines was performed. The photothermal effect of those nanomaterials has been demonstrated in vitro as well as their ability to generate reactive oxygen species.
Project description:ImportanceDifferential diagnosis of congenital vascular anomalies is challenging, and misdiagnosis is frequent. Vascular malformations are considered one of the most difficult vascular diseases to treat. A new imaging approach that visualizes anatomical features and quantitatively assesses molecular biomarkers noninvasively would aid diagnosis and monitoring of treatment response of vascular malformations.ObjectiveTo evaluate multispectral optoacoustic tomography (MSOT) for noninvasive assessment of molecular biomarkers for diagnosis and therapeutic monitoring of vascular malformations.Design, setting, and participantsThis pilot study examined 6 patients with arteriovenous malformation (AVM) and 6 patients with venous malformation (VM) diagnosed according to the classification system of the International Society for the Study of Vascular Anomalies. All patients underwent clinical hybrid MSOT/ultrasonographic (US) imaging before and after treatment at an interdisciplinary vascular malformations clinic by trained MSOT and US examiners. Examiners were blinded to the patient history and stage of disease. Data were collected from April 11 to 25, 2017, and analyzed from May 1 to October 31, 2017.InterventionsClinical hybrid MSOT/US imaging was performed before or within 1 week after endovascular embolization (for AVM) or percutaneous sclerotherapy (for VM).Main outcomes and measuresRegion-of-interest analysis of the lesion and contralateral healthy tissue revealed quantitative values for oxygenated (HbO2) and deoxygenated (HbR) hemoglobin by spectral unmixing of optoacoustic data acquired at multiple wavelengths. The HbO2:HbR ratio was calculated for healthy tissue and for AVM and VM before and after treatment.ResultsTwelve patients (9 female and 3 male; mean [SD] age, 23 [18] years; age range, 6-59 years) with vascular malformations (6 with AVMs and 6 with VMs) were included. Significantly higher HbO2:HbR ratios for AVMs (mean [SEM], 1.82 [0.08] vs 0.89 [0.03]; P < .001) and for VMs (mean [SEM], 1.12 [0.04] vs 0.89 [0.03]; P = .001) were found on MSOT tissue compared with healthy tissue. Significantly higher HbO2:HbR ratios for AVMs compared with VMs (mean [SEM], 1.82 [0.08] vs 1.12 [0.04]; P < .001) were also found. Therefore, MSOT provided intrinsic biomarker patterns to distinguish both vascular malformations. After therapy, the HbO2:HbR ratio dropped in correlation to treatment success validated by magnetic resonance imaging or angiography.Conclusions and relevanceThis study suggests that different types of vascular malformations are clearly distinguished by MSOT-based, noninvasive assessment of hemoglobin levels in vascular malformations. The therapy effects found in this study could be instantly visualized, and this may offer a new tool for noninvasive diagnosis and monitoring of vascular malformations.
Project description:Photo-or optoacoustic imaging (OAI) allows quantitative imaging of target tissues. Using multi-wavelength illumination with subsequent ultrasound detection, it may visualize a variety of different chromophores at centimeter depth. Despite its non-invasive, label-free advantages, the precision of repeated measurements for clinical applications is still elusive. We present a multilayer analysis of n = 1920 imaging datasets obtained from a prospective clinical trial (NCT03979157) in n = 10 healthy adult volunteers. All datasets were analyzed for 13 single wavelengths (SWL) between 660 nm-1210 nm and five MSOT-parameters (deoxygenated/oxygenated/total hemoglobin, collagen and lipid) by a semi-automated batch mode software. Intraclass correlation coefficients (ICC) were good to excellent for intrarater (SWL: 0.82-0.92; MSOT-parameter: 0.72-0.92) and interrater reproducibility (SWL: 0.79-0.87; MSOT-parameter: 0.78-0.86), with the exception for MSOT-parameter lipid (interrater ICC: 0.56). Results were stable over time, but exercise-related effects as well as inter-and intramuscular variability were observed. The findings of this study provide a framework for further clinical OAI implementation.
Project description:Multispectral optoacoustic tomography (MSOT) is an emerging imaging modality, which is able to capture data at high spatiotemporal resolution using rapid tuning of the excitation laser wavelength. However, owing to the necessity of imaging one wavelength at a time to the exclusion of others, forming a complete multispectral image requires multiple excitations over time, which may introduce aliasing due to underlying spectral dynamics or noise in the data. In order to mitigate this limitation, we have applied kinematic ? and ?? filters to multispectral time series, providing an estimate of the underlying multispectral image at every point in time throughout data acquisition. We demonstrate the efficacy of these methods in suppressing the inter-frame noise present in dynamic multispectral image time courses using a multispectral Shepp-Logan phantom and mice bearing distinct renal cell carcinoma tumors. The gains in signal to noise ratio provided by these filters enable higher-fidelity downstream analysis such as spectral unmixing and improved hypothesis testing in quantifying the onset of signal changes during an oxygen gas challenge.
Project description:Despite significant efforts to translate nanotechnology for cancer application, lack of identification of biodistribution/accumulation of these nanovehicles in vivo remains a substantial barrier for successful implementation of theranostic nanoparticles in the clinic. The purpose of the study was to develop a tumor-targeted theranostic nanovehicle for pancreatic cancer detectable by multispectral optoacoustic tomography (MSOT). To improve the tumor specificity of our mesoporous silica nanoparticle (MSN), we utilized a dual targeting strategy: 1) an elevated tumor receptor, urokinase plasminogen activator receptor (UPAR), and 2) the acidic tumor microenvironment. The tumor specificity of the MSN particle was improved with the addition of both chitosan, targeting acidic pH, and urokinase plasminogen activator (UPA), targeting UPAR. Drug release assays confirmed pH responsive release of gemcitabine in vitro. The UPAR specific binding of MSN-UPA nanoparticles was confirmed by reduction in fluorescence signal following MSN-UPA nanoparticle treatment in UPAR positive cells blocked with a UPAR-blocking antibody. Based upon Indocyanine Green encapsulation within the nanoparticles, UPA ligand targeted MSNs demonstrated increased intensity compared to untargeted MSNs at both pH7.4 (7×) and 6.5 (20×); however the signal was much more pronounced at a pH of 6.5 using tissue phantoms (p<0.05). In vivo, MSN-UPA particles demonstrated orthotopic pancreatic tumor specific accumulation compared to liver or kidney as identified using multispectral optoacoustic tomography (p<0.05) and confirmed by ex vivo analysis. By tracking in vivo nanoparticle biodistribution with MSOT, it was shown that pH responsive, ligand targeted MSNs preferentially bind to pancreatic tumors for payload delivery.
Project description:The increasing worldwide prevalence of obesity, fatty liver diseases and the emerging understanding of the important roles lipids play in various other diseases is generating significant interest in lipid research. Lipid visualization in particular can play a critical role in understanding functional relations in lipid metabolism. We investigated the potential of multispectral optoacoustic tomography (MSOT) as a novel modality to non-invasively visualize lipids in laboratory mice around the 930nm spectral range. Using an obesity-induced non-alcoholic fatty liver disease (NAFLD) mouse model, we examined whether MSOT could detect and differentiate different grades of hepatic steatosis and monitor the accumulation of lipids in the liver quantitatively over time, without the use of contrast agents, i.e. in label-free mode. Moreover, we demonstrate the efficacy of using the real-time clearance kinetics of indocyanine green (ICG) in the liver, monitored by MSOT, as a biomarker to evaluate the organ's function and assess the severity of NAFLD. This study establishes MSOT as an efficient imaging tool for lipid visualization in preclinical studies, particularly for the assessment of NAFLD.
Project description:We introduce a new approach to detect individual microparticles that contain NIR fluorescent dye by multispectral optoacoustic tomography in the context of the hemoglobin-rich environment within murine liver. We encapsulated a near infrared (NIR) fluorescent dye within polystyrene microspheres, then injected them into the ileocolic vein, which drains to the liver. NIR absorption was determined using multispectral optoacoustic tomography. To quantitate the minimum diameter of microspheres, we used both colorimetric and spatial information to segment the regions in which the microspheres appear. Regional diameter was estimated by doubling the maximum regional distance. We found that the minimum microsphere size threshold for detection by multispectral optoacoustic tomography images is 78.9 µm.