Ontology highlight
ABSTRACT: Background
The forkhead transcription factor (FOXL2) plays a crucial role in blepharophimosis-ptosis-epicanthus inversus syndrome (BPES), sex determination, ovary growth and development, and cell cycle regulation. Emerging investigations have focused on the downstream targets of FOXL2, while little is known about its upstream regulation.Results
In this study, we show that FOXL2 could be regulated by STAT3 in cancer cells and that STAT3 binds to FOXL2 at the 5'- GCCTGATGTTTGTCTTCCCAGTCTGTGGCAA-3' site using EMSA and ChIP. We further found that knockdown of STAT3 or FOXL2 could significantly induce cancer cell apoptosis, indicating the importance of these two genes in cancer cell growth and apoptosis. Our data also indicated that the increased apoptotic cell rate may be caused by changes in apoptosis-related genes, such as TNF, TRAIL and GnRHR.Conclusion
This study presents a new upstream regulator of FOXL2 and demonstrats that this new STAT3-FOXL2 pathway has an important function in HeLaHeLa cell apoptosis, providing new insights regarding the targeting of FOXL2 for cancer prevention and treatment.
SUBMITTER: Han Y
PROVIDER: S-EPMC6587274 | biostudies-literature | 2019 Jun
REPOSITORIES: biostudies-literature
Han Yangyang Y Wu Jun J Yang Weiwei W Wang Di D Zhang Tianliang T Cheng Min M
BMC molecular and cell biology 20190620 1
<h4>Background</h4>The forkhead transcription factor (FOXL2) plays a crucial role in blepharophimosis-ptosis-epicanthus inversus syndrome (BPES), sex determination, ovary growth and development, and cell cycle regulation. Emerging investigations have focused on the downstream targets of FOXL2, while little is known about its upstream regulation.<h4>Results</h4>In this study, we show that FOXL2 could be regulated by STAT3 in cancer cells and that STAT3 binds to FOXL2 at the 5'- GCCTGATGTTTGTCTTCC ...[more]