Unknown

Dataset Information

0

Spectrally filtered passive Si photodiode array for on-chip fluorescence imaging of intracellular calcium dynamics.


ABSTRACT: On-chip fluorescence imaging devices are recognized for their miniaturized and implantable nature that can benefit the study of intracellular dynamics at a variety of settings. However, it is challenging to integrate a spectral filter onto such devices (to block the excitation light) that has similar performance to the state-of-the-art emission filters used in fluorescence microscopes. In this work, we report a 100%-yield, spectrally filtered passive Si photodiode array designed for on-chip fluorescence imaging of intracellular Ca2+ dynamics. Coated with a spectral filter layer that has a high extinction ratio (>103), our array features high wavelength selectivity (>102), high linearity (R2?>?0.98), and low detection limit (45.1??W 640/30?nm light). Employing fluorescence microscopy as the reference, we demonstrate that our array can conduct on-chip Ca2+ imaging in C2C12 cells that were chemically triggered to increase their intracellular Ca2+ levels. Importantly, our array-level data qualitatively captured the static fluorescence image of the cells and the intracellular Ca2+ dynamics, both of which are correlated with the microscope-collected data. Our results suggest the possible use of the spectrally filtered array towards a miniaturized on-chip fluorescence imaging device, which may open up new opportunities in tissue-level pharmaceutical screening and fundamental studies on cell networks.

SUBMITTER: Xiong Z 

PROVIDER: S-EPMC6591417 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spectrally filtered passive Si photodiode array for on-chip fluorescence imaging of intracellular calcium dynamics.

Xiong Zheshun Z   Hwang Fuu-Jiun FJ   Sun Feng F   Xie Yaowei Y   Mao Dacheng D   Li Geng-Lin GL   Xu Guangyu G  

Scientific reports 20190624 1


On-chip fluorescence imaging devices are recognized for their miniaturized and implantable nature that can benefit the study of intracellular dynamics at a variety of settings. However, it is challenging to integrate a spectral filter onto such devices (to block the excitation light) that has similar performance to the state-of-the-art emission filters used in fluorescence microscopes. In this work, we report a 100%-yield, spectrally filtered passive Si photodiode array designed for on-chip fluo  ...[more]

Similar Datasets

| S-EPMC5953275 | biostudies-literature
| S-EPMC3497712 | biostudies-literature
| S-EPMC5974700 | biostudies-literature
| S-EPMC4244624 | biostudies-literature
| S-EPMC3189259 | biostudies-other
| S-EPMC3230961 | biostudies-literature
| S-EPMC6274978 | biostudies-literature
| S-EPMC8660884 | biostudies-literature
| S-EPMC5780552 | biostudies-literature
| S-EPMC5031993 | biostudies-literature