ABSTRACT: The cullin-RING E3 ubiquitin ligases (CRLs) play crucial roles in modulating the stability of proteins in the cell and are, in turn, regulated by post-translational modification by the ubiquitin-like (Ubl) protein NEDD8. This process, termed neddylation, is reversible through the action of the COP9 signalosome (CSN); a multi-subunit metalloprotease conserved among eukaryotes that plays direct or indirect roles in DNA repair, cell signaling and cell cycle regulation in part through modulating the activity of the CRLs. Previously, inhibition of CRL neddylation by MLN4924, a small molecule inhibitor of the NEDD8-activating enzyme 1 (NAE1), was shown to induce interphase cell cycle arrest and cell death. Using fixed and living cell microscopy, we re-evaluated the cell cycle effects of inhibition of neddylation by MLN4924 in both asynchronous and mitotic cell populations. Consistent with previous studies, treatment of asynchronous cells with MLN4924 increased CDT1 expression levels, induced G2 arrest and increased nuclear size. However, in synchronized cells treated in mitosis, mitotic defects were observed including lagging chromosomes and binucleated daughter cells. Consistent with neddylation and deneddylation playing a role in cytokinesis, NEDD8, as well as subunits of the CSN, could be localized at the midbody and cleavage furrow. Finally, treatment of mitotic cells with MLN4924 induced the premature accumulation of MKLP1 at the cleavage furrow, a key regulator of cytokinesis, which was concomitant with increased abscission delay and failure. Thus, these studies uncover an uncharacterized mitotic effect of MLN4924 on MKLP1 accumulation at the midbody and support a role for neddylation during cytokinesis. Abbreviations: CSN, COP9 Signalosome; MKLP1, mitotic kinesin-like protein 1; NEDD8, Neural precursor cell Expressed, Developmentally Down-regulated 8.