Unknown

Dataset Information

0

Anti-CD40 mAb enhanced efficacy of anti-PD1 against osteosarcoma.


ABSTRACT: The overall survival rate of patients with osteosarcoma has remained stagnant at 15-30% for several decades. Although immunotherapy has revolutionized the oncology field, largely attributed to the success of immune-checkpoint blockade, the durability and efficacy of anti-PD1 (programmed cell death protein 1) mAb vary across different malignancies. Among the major reasons for tumor resistance to this immune checkpoint therapy is the absence of tumor-infiltrating cytotoxic T lymphocytes. However, the presence of intratumor exhausted PD1hi T cells also contributes to insensitivity to anti-PD1 treatment. In this study, we established the osteosarcoma mouse tumor model resistant to anti-PD1 mAb that harbored PD1hi T cells. Furthermore, flow cytometry analysis of tumor infiltrating leukocytes after treatment was used as a screening platform to identify agents that could re-sensitize T cells to anti-PD1 mAb. Results showed that anti-CD40 mAb treatment converted PD1hi T cells to PD1lo T cells, reversing phenotypic T cell exhaustion and sensitizing anti-PD1 refractory tumors to respond to anti-PD1 mAb. Results also showed that intratumor Treg presented with a less activated and attenuated suppressive phenotype after anti-CD40 mAb treatment. Our study provides proof of concept to systematically identify immune conditioning agents, which are able to convert PD1hi T cells to PD1lo T cells, with clinical implications in the treatment against refractory osteosarcoma to anti-PD1 mAb.

SUBMITTER: Zhang J 

PROVIDER: S-EPMC6593232 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anti-CD40 mAb enhanced efficacy of anti-PD1 against osteosarcoma.

Zhang Jingzhe J   Li Ye Y   Yang Shoujun S   Zhang Lening L   Wang Wenjun W  

Journal of bone oncology 20190612


The overall survival rate of patients with osteosarcoma has remained stagnant at 15-30% for several decades. Although immunotherapy has revolutionized the oncology field, largely attributed to the success of immune-checkpoint blockade, the durability and efficacy of anti-PD1 (programmed cell death protein 1) mAb vary across different malignancies. Among the major reasons for tumor resistance to this immune checkpoint therapy is the absence of tumor-infiltrating cytotoxic T lymphocytes. However,  ...[more]

Similar Datasets

| S-EPMC7674687 | biostudies-literature
| S-EPMC6617297 | biostudies-literature
| S-EPMC6367456 | biostudies-literature
| S-EPMC7509149 | biostudies-literature
| S-EPMC2678620 | biostudies-literature
| S-EPMC10935502 | biostudies-literature
| S-EPMC6980372 | biostudies-literature
2024-10-01 | GSE248155 | GEO
| S-EPMC5734786 | biostudies-literature
2024-10-01 | GSE248154 | GEO