Project description:BACKGROUND: Grass Carp Reovirus (GCRV), a tentative member in the genus Aquareovirus of family Reoviridae, contains eleven segmented (double-stranded RNA) dsRNA genome which encodes 12 proteins. A low-copy core component protein VP4, encoded by the viral genome segment 5(S5), has been suggested to play a key role in viral genome transcription and replication. RESULTS: To understand the role of minor core protein VP4 played in molecular pathogenesis during GCRV infection, the recombinant GCRV VP4 gene was constructed and expressed in both prokaryotic and mammalian cells in this investigation. The recombinant His-tag fusion VP4 products expressed in E.coli were identified by Western blotting utilizing His-tag specific monoclonal and GCRV polyclonal antibodies. In addition, the expression of VP4 in GCRV infected cells, appeared in granules structure concentrated mainly in the cytoplasm, can be detected by Immunofluorescence (IF) using prepared anti-VP4 polyclonal antibody. Meanwhile, VP4 protein in GCRV core and infected cell lysate was identified by Immunoblotting (IB) assay. Of particular note, the VP4 protein was exhibited a diffuse distribution in the cytoplasm and nucleus in transfected cells, suggesting that VP4 protein may play a partial role in the nucleus by regulating cell cycle besides its predicted cytoplasmic function in GCRV infection. CONCLUSIONS: Our results indicate the VP4 is a core component in GCRV. The cellular localization of VP4 is correlated with its predicted function. The data provide a foundation for further studies aimed at understanding the role of VP4 in viroplasmic inclusion bodies (VIB) formation during GCRV replication and assembly.
Project description:BackgroundThe grass carp hemorrhagic disease caused by the grass carp reovirus (GCRV) is a major disease that hampers the development of grass carp aquaculture. The mechanism underlying GCRV pathogenesis and hemorrhagic symptoms is still unknown. MicroRNAs (miRNAs) are key regulators involved in various biological processes. The aim of this study was to identify conserved and novel miRNAs in grass carp in response to GCRV infection, as well as attempt to reveal the mechanism underlying GCRV pathogenesis and hemorrhagic symptoms.ResultsGrass carp were infected with GCRV, and spleen samples were collected at 0 (control), 1, 3, 5, 7, and 9 days post-infection (dpi). These samples were used to construct and sequence small RNA libraries. A total of 1208 miRNAs were identified, of which 278 were known miRNAs and 930 were novel miRNAs. Thirty-six miRNAs were identified to exhibit differential expression when compared with the control, and 536 target genes were predicted for the 36 miRNAs. GO and KEGG enrichment analyses of these target genes showed that many of the significantly enriched terms were associated with immune response, blood coagulation, hemostasis, and complement and coagulation cascades, especially the GO term "blood coagulation" and pathway "complement and coagulation cascades." Ten representative target genes involved in "complement and coagulation cascades" were selected for qPCR analysis, and the results showed that the expression patterns of these target genes were significantly upregulated at 7 dpi, suggesting that the pathway "complement and coagulation cascades" was strongly activated.ConclusionConserved and novel miRNAs in response to GCRV infection were identified in grass carp, of which 278 were known miRNAs and 930 were novel miRNAs. Many of the target genes involved in immune response, blood coagulation, hemostasis, and complement and coagulation cascades. Strong activation of the pathway "complement and coagulation cascades" may have led to endothelial-cell and blood-cell damage and hemorrhagic symptoms. The present study provides a new insight into understanding the mechanism underlying GCRV pathogenesis and hemorrhagic symptoms.
Project description:BackgroundMyxovirus resistance (Mx) proteins are crucial effectors of the innate antiviral response against a wide range of viruses, mediated by the type I interferon (IFN-I) signaling pathway. However, the antiviral activity of Mx proteins is diverse and complicated in different species.Methodology/principal findingsIn the current study, two novel Mx genes (CiMx1 and CiMx3) were identified in grass carp (Ctenopharyngodon idella). CiMx1 and CiMx3 proteins exhibit high sequence identity (92.1%), and low identity with CiMx2 (49.2% and 49.5%, respectively) from the GenBank database. The predicted three-dimensional (3D) structures are distinct among the three isoforms. mRNA instability motifs also display significant differences in the three genes. The spatial and temporal expression profiles of three C. idella Mx genes and the IFN-I gene were investigated by real-time fluorescence quantitative RT-PCR (qRT-PCR) following infection with grass carp reovirus (GCRV) in vivo and in vitro. The results demonstrated that all the four genes were implicated in the anti-GCRV immune response, that mRNA expression of Mx genes might be independent of IFN-I, and that CIK cells are suitable for antiviral studies. By comparing expression patterns following GCRV challenge or poly(I:C) treatment, it was observed that GCRV blocks mRNA expression of the four genes. To determine the functions of Mx genes, three CiMx cDNAs were cloned into expression vectors and utilized for transfection of CIK cells. The protection conferred by each recombinant CiMx protein against GCRV infection was evaluated. Antiviral activity against GCRV was demonstrated by reduced cytopathic effect, lower virus titer and lower levels of expressed viral transcripts. The transcription of IFN-I gene was also monitored.Conclusions/significanceThe results indicate all three Mx genes can suppress replication of grass carp reovirus and over-expression of Mx genes mediate feedback inhibition of the IFN-I gene.
Project description:Integrin ?-1 (ITGB1) is a transmembrane protein belonging to the integrin family and it plays an important role in viral entry. In this study, the itgb1b gene of the rare minnow, Gobiocypris rarus, was cloned and analyzed. To investigate the possible role of itgb1b on grass carp reovirus (GCRV) infection, we generated an ITGB1b-deficient rare minnow (ITGB1b-/-) using the CRISPR/Cas9 system. Following stimulation with GCRV, the survival time of the -ITGB1b-/- rare minnows was extended in comparison to the wild-type minnows. Moreover, the relative copy number of GCRV and the level of clathrin-mediated endocytosis-associated and apoptosis-related gene expression in the ITGB1b-/- rare minnows was significantly lower than that of the wild-type minnows. These results suggested that the absence of itgb1b reduced viral entry efficiency and the expression of apoptosis-related genes. Moreover, the data suggested that itgb1b played an important role in mediating the entry of viruses into the cells via clathrin. Therefore, these findings provide novel insight into the function of itgb1b in the process of GCRV infection.
Project description:Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Project description:Grass carp is an important aquaculture fish species in China that is affected by severe diseases, especially haemorrhagic disease caused by grass carp reovirus (GCRV). However, the mechanisms of GCRV invasion and infection remain to be elucidated. In the present study, Ctenopharyngodon idellus kidney (CIK) cells were infected with GCRV, harvested at 0, 8, 24, and 72 h post infection, respectively, and then subjected to transcriptomics sequencing. Each sample yielded more than 6 Gb of clean data and 40 million clean reads. To better understand GCRV infection, the process was divided into three phases: the early (0-8 h post infection), middle (8-24 h post infection), and late (24-72 h) stages of infection. A total of 76 (35 up-regulated, 41 down-regulated), 553 (463 up-regulated, 90 down-regulated), and 284 (150 up-regulated, 134 down-regulated) differently expressed genes (DEGs) were identified during the early, middle, and late stages of infection, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that DEGs were mainly involved in carbohydrate biosynthesis, transport, and endocytosis in the early stage, phagocytosis and lysosome pathways were mainly enriched in the middle stage, and programmed cell death, apoptosis, and inflammation were largely associated with the late stage. These results suggest GCRV infection is a gradual process involving adsorption on the cell surface, followed by endocytosis into cells, transport by lysosomes, and eventually resulted in cell necrosis and/or apoptosis. Our findings provide insight into the mechanisms of grass carp reovirus infection.
Project description:Grass carp reovirus (GCRV) is a causative agent of haemorrhagic disease in grass carp that drastically affects grass carp aquaculture. Here we report a novel GCRV isolate isolated from sick grass carp that induces obvious cytopathic effect in CIK cells and name it as GCRV096. A large number of GCRV 096 viral particles were found in the infected CIK cells by electron microscope. The shape, size and the arrangement of this virus were similar to those of grass carp reovirus. With the primers designed according to GCRV 873 genome sequences, specific bands were amplified from sick grass carp and the infected CIK cells. The homology rates among vp4, vp6 and vp7 gene in GCRV 096 and those of some GCRV isolates were over 89%. In this study, the sequences of vp4, vp6 and vp7 were used to analyse sequence variation, phylogenetic relationships and genotypes in twenty five GCRV isolates. The results indicated these twenty five GCRV isolates should be attributed to four genotypes. And there were no obvious characteristics in the geographical distribution of GCRV genotype. The study should provide the exact foundation for developing more effective prevention strategies of grass carp haemorrhagic disease.
Project description:Aquareovirus, which is a member of the Reoviridae family, was isolated from aquatic animals. A close molecular evolutionary relationship between aquareoviruses and mammalian orthoreoviruses was revealed. However, the functions of the aquareovirus genome-encoded proteins are poorly understood. We investigated the molecular characteristics of the outer capsid proteins, namely, VP5 and VP7, of grass carp reovirus (GCRV). The peptides VP5 and VP7 were determined using in-gel tryptic digestion and mass spectrometry. Recovered peptides represented 76% and 66% of the full-length VP5 and VP7 sequences, respectively. Significantly, two-lysine acetylation, as well as two-serine and two-threonine phosphorylation modifications, were first revealed in VP5. We found that the initial amino acid in VP5 was Pro43, suggesting that a lower amount of VP5 remained uncleaved in virions at the autocleavage site (Asn42-Pro43). Further biochemical evidence showed that the cleaved VP5N/VP5C conformation was the major constituent of the particles. Moreover, early cleavage fragments of VP7 and enhanced infectivity were detected after limited tryptic digestion of GCRV, indicating that stepwise VP7 cleavage is essential for VP5 conformational rearrangement. Our results provide insights into the roles of posttranslational modifications in VP5 and its association with VP7 in the viral life cycle.