Unknown

Dataset Information

0

ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons.


ABSTRACT: Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.

SUBMITTER: Shulman Y 

PROVIDER: S-EPMC6605539 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons.

Shulman Yoav Y   Stavsky Alexandra A   Fedorova Tatiana T   Mikulincer Dan D   Atias Merav M   Radinsky Igal I   Kahn Joy J   Slutsky Inna I   Gitler Daniel D  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20150101 3


Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produce  ...[more]

Similar Datasets

| S-EPMC2713391 | biostudies-literature
| S-EPMC6737913 | biostudies-literature
| S-EPMC2908741 | biostudies-literature
| S-EPMC10658193 | biostudies-literature
| S-EPMC6622686 | biostudies-literature
| S-EPMC2849838 | biostudies-literature
| S-EPMC2877100 | biostudies-literature
| S-EPMC4160768 | biostudies-literature
| S-EPMC4086619 | biostudies-literature
| S-EPMC2708882 | biostudies-other