Quantitative high-throughput screening assays for the discovery and development of SIRP?-CD47 interaction inhibitors.
Ontology highlight
ABSTRACT: CD47 is an immune checkpoint molecule that downregulates key aspects of both the innate and adaptive anti-tumor immune response via its counter receptor SIRP?, and it is expressed at high levels in a wide variety of tumor types. This has led to the development of biologics that inhibit SIRP? engagement including humanized CD47 antibodies and a soluble SIRP? decoy receptor that are currently undergoing clinical trials. Unfortunately, toxicological issues, including anemia related to on-target mechanisms, are barriers to their clinical advancement. Another potential issue with large biologics that bind CD47 is perturbation of CD47 signaling through its high-affinity interaction with the matricellular protein thrombospondin-1 (TSP1). One approach to avoid these shortcomings is to identify and develop small molecule molecular probes and pretherapeutic agents that would (1) selectively target SIRP? or TSP1 interactions with CD47, (2) provide a route to optimize pharmacokinetics, reduce on-target toxicity and maximize tissue penetration, and (3) allow more flexible routes of administration. As the first step toward this goal, we report the development of an automated quantitative high-throughput screening (qHTS) assay platform capable of screening large diverse drug-like chemical libraries to discover novel small molecules that inhibit CD47-SIRP? interaction. Using time-resolved Förster resonance energy transfer (TR-FRET) and bead-based luminescent oxygen channeling assay formats (AlphaScreen), we developed biochemical assays, optimized their performance, and individually tested them in small-molecule library screening. Based on performance and low false positive rate, the LANCE TR-FRET assay was employed in a ~90,000 compound library qHTS, while the AlphaScreen oxygen channeling assay served as a cross-validation orthogonal assay for follow-up characterization. With this multi-assay strategy, we successfully eliminated compounds that interfered with the assays and identified five compounds that inhibit the CD47-SIRP? interaction; these compounds will be further characterized and later disclosed. Importantly, our results validate the large library qHTS for antagonists of CD47-SIRP? interaction and suggest broad applicability of this approach to screen chemical libraries for other protein-protein interaction modulators.
SUBMITTER: Miller TW
PROVIDER: S-EPMC6611588 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA