Unknown

Dataset Information

0

Nanoencapsulated Quercetin Improves Cardioprotection during Hypoxia-Reoxygenation Injury through Preservation of Mitochondrial Function.


ABSTRACT: The effective delivery of antioxidants to the cells is hindered by their high metabolization rate. In this work, quercetin was encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. They were characterized in terms of its physicochemical properties (particle size distribution, ?-potential, encapsulation efficiency, quercetin release and biological interactions with cardiac cells regarding nanoparticle association, and internalization and protective capability against relevant challenges). A better delivery of quercetin was achieved when encapsulated versus free. When the cells were challenged with antimycin A, it resulted in lower mitochondrial O2 - (4.65- vs. 5.69- fold) and H2O2 rate production (1.15- vs. 1.73- fold). Similarly, under hypoxia-reoxygenation injury, a better maintenance of cell viability was found (77 vs. 65%), as well as a reduction of thiol groups (~70 vs. 40%). Therefore, the delivery of encapsulated quercetin resulted in the preservation of mitochondrial function and ATP synthesis due to its improved oxidative stress suppression. The results point to the potential of this strategy for the treatment of oxidative stress-based cardiac diseases.

SUBMITTER: Lozano O 

PROVIDER: S-EPMC6612997 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nanoencapsulated Quercetin Improves Cardioprotection during Hypoxia-Reoxygenation Injury through Preservation of Mitochondrial Function.

Lozano Omar O   Lázaro-Alfaro Anay A   Silva-Platas Christian C   Oropeza-Almazán Yuriana Y   Torres-Quintanilla Alejandro A   Bernal-Ramírez Judith J   Alves-Figueiredo Hugo H   García-Rivas Gerardo G  

Oxidative medicine and cellular longevity 20190624


The effective delivery of antioxidants to the cells is hindered by their high metabolization rate. In this work, quercetin was encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. They were characterized in terms of its physicochemical properties (particle size distribution, <i>ζ</i>-potential, encapsulation efficiency, quercetin release and biological interactions with cardiac cells regarding nanoparticle association, and internalization and protective capability against relevant  ...[more]

Similar Datasets

| S-EPMC8159762 | biostudies-literature
| S-EPMC5101611 | biostudies-other
| S-EPMC5350333 | biostudies-literature
| S-EPMC3923380 | biostudies-literature
| S-EPMC5638245 | biostudies-literature
| S-EPMC6346394 | biostudies-literature
| S-EPMC8564287 | biostudies-literature
| S-EPMC8059159 | biostudies-literature
| S-EPMC4262720 | biostudies-literature
| S-EPMC3547061 | biostudies-literature