Ontology highlight
ABSTRACT: Aims
This study aimed to develop and validate deep-learning-based artificial intelligence algorithm for predicting mortality of AHF (DAHF).Methods and results
12,654 dataset from 2165 patients with AHF in two hospitals were used as train data for DAHF development, and 4759 dataset from 4759 patients with AHF in 10 hospitals enrolled to the Korean AHF registry were used as performance test data. The endpoints were in-hospital, 12-month, and 36-month mortality. We compared the DAHF performance with the Get with the Guidelines-Heart Failure (GWTG-HF) score, Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score, and other machine-learning models by using the test data. Area under the receiver operating characteristic curve of the DAHF were 0.880 (95% confidence interval, 0.876-0.884) for predicting in-hospital mortality; these results significantly outperformed those of the GWTG-HF (0.728 [0.720-0.737]) and other machine-learning models. For predicting 12- and 36-month endpoints, DAHF (0.782 and 0.813) significantly outperformed MAGGIC score (0.718 and 0.729). During the 36-month follow-up, the high-risk group, defined by the DAHF, had a significantly higher mortality rate than the low-risk group(p<0.001).Conclusion
DAHF predicted the in-hospital and long-term mortality of patients with AHF more accurately than the existing risk scores and other machine-learning models.
SUBMITTER: Kwon JM
PROVIDER: S-EPMC6613702 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
Kwon Joon-Myoung JM Kim Kyung-Hee KH Jeon Ki-Hyun KH Lee Sang Eun SE Lee Hae-Young HY Cho Hyun-Jai HJ Choi Jin Oh JO Jeon Eun-Seok ES Kim Min-Seok MS Kim Jae-Joong JJ Hwang Kyung-Kuk KK Chae Shung Chull SC Baek Sang Hong SH Kang Seok-Min SM Choi Dong-Ju DJ Yoo Byung-Su BS Kim Kye Hun KH Park Hyun-Young HY Cho Myeong-Chan MC Oh Byung-Hee BH
PloS one 20190708 7
<h4>Aims</h4>This study aimed to develop and validate deep-learning-based artificial intelligence algorithm for predicting mortality of AHF (DAHF).<h4>Methods and results</h4>12,654 dataset from 2165 patients with AHF in two hospitals were used as train data for DAHF development, and 4759 dataset from 4759 patients with AHF in 10 hospitals enrolled to the Korean AHF registry were used as performance test data. The endpoints were in-hospital, 12-month, and 36-month mortality. We compared the DAHF ...[more]