Functional and mechanistic studies reveal MAGEA3 as a pro-survival factor in pancreatic cancer cells.
Ontology highlight
ABSTRACT: BACKGROUND:In the era of personalized therapy, functional annotation of less frequent genetic aberrations will be instrumental in adapting effective therapeutic in clinic. Overexpression of Melanoma associated antigen A3 (MAGEA3) is reported in certain pancreatic cancer (PCA) patients. The major objective of the current study was to investigate the functional role of MAGEA3 in pancreatic cancer cells (PCCs) growth and survival. METHODS:Using overexpression (tet-on regulated system and constitutive expression system) and knockdown (by siRNA and shRNA) approach, we dissected the mechanistic role of MAGEA3 in pancreatic cancer pathogenesis. We generated MAGEA3 expressing stable PCA cell lines and mouse primary pancreatic epithelial cells. MAGEA3 was also depleted in certain MAGEA3 positive PCCs by siRNA or shRNA. The stable cells were subjected to in vitro assays like proliferation and survival assays under growth factor deprivation or in the presence of cytotoxic drugs. The MAGEA3 overexpressing or depleted stable PCCs were evaluated in vivo using xenograft model to check the role of MAGEA3 in tumor progression. We also dissected the mechanism behind the MAGEA3 role in tumor progression using western blot analysis and CCL2 neutralization. RESULTS:MAGEA3 overexpression in PCA cells did not alter the cell proliferation but protected the cells during growth factor deprivation and also in the presence of cytotoxic drugs. However, depletion of MAGEA3 in MAGEA3 positive cells resulted in reduced cell proliferation and increased apoptosis upon growth factor deprivation and also in response to cytotoxic drugs. The in vivo xenograft study revealed that overexpression of MAGEA3 promoted tumor growth however depleting the same hindered the tumor progression. Mechanistically, our in vitro and in vivo study revealed that MAGEA3 has tumor-promoting role by reducing macro-autophagy and overexpressing pro-survival molecules like CCL2 and survivin. CONCLUSION:Our data proves tumor-promoting role of MAGEA3 and provides the rationale to target MAGEA3 and/or its functional mediators like CCL2 for PCA, which may have a better impact in PCA therapy.
SUBMITTER: Das B
PROVIDER: S-EPMC6615156 | biostudies-literature | 2019 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA