Unknown

Dataset Information

0

Hyperglycemia-Triggered Sphingosine-1-Phosphate and Sphingosine-1-Phosphate Receptor 3 Signaling Worsens Liver Ischemia/Reperfusion Injury by Regulating M1/M2 Polarization.


ABSTRACT: Hyperglycemia aggravates hepatic ischemia/reperfusion injury (IRI), but the underlying mechanism for the aggravation remains elusive. Sphingosine-1-phosphate (S1P) and sphingosine-1-phosphate receptors (S1PRs) have been implicated in metabolic and inflammatory diseases. Here, we discuss whether and how S1P/S1PRs are involved in hyperglycemia-related liver IRI. For our in vivo experiment, we enrolled diabetic patients with benign hepatic disease who had liver resection, and we used streptozotocin (STZ)-induced hyperglycemic mice or normal mice to establish a liver IRI model. In vitro bone marrow-derived macrophages (BMDMs) were differentiated in high-glucose (HG; 30 mM) or low-glucose (LG; 5 mM) conditions for 7 days. The expression of S1P/S1PRs was analyzed in the liver and BMDMs. We investigated the functional and molecular mechanisms by which S1P/S1PRs may influence hyperglycemia-related liver IRI. S1P levels were higher in liver tissues from patients with diabetes mellitus and mice with STZ-induced diabetes. S1PR3, but not S1PR1 or S1PR2, was activated in liver tissues and Kupffer cells under hyperglycemic conditions. The S1PR3 antagonist CAY10444 attenuated hyperglycemia-related liver IRI based on hepatic biochemistry, histology, and inflammatory responses. Diabetic livers expressed higher levels of M1 markers but lower levels of M2 markers at baseline and after ischemia/reperfusion. Dual-immunofluorescence staining showed that hyperglycemia promoted M1 (CD68/CD86) differentiation and inhibited M2 (CD68/CD206) differentiation. Importantly, CAY10444 reversed hyperglycemia-modulated M1/M2 polarization. HG concentrations in vitro also triggered S1P/S1PR3 signaling, promoted M1 polarization, inhibited M2 polarization, and enhanced inflammatory responses compared with LG concentrations in BMDMs. In contrast, S1PR3 knockdown significantly retrieved hyperglycemia-modulated M1/M2 polarization and attenuated inflammation. In conclusion, our study reveals that hyperglycemia specifically triggers S1P/S1PR3 signaling and exacerbates liver IRI by facilitating M1 polarization and inhibiting M2 polarization, which may represent an effective therapeutic strategy for liver IRI in diabetes.

SUBMITTER: Hu Y 

PROVIDER: S-EPMC6617772 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hyperglycemia-Triggered Sphingosine-1-Phosphate and Sphingosine-1-Phosphate Receptor 3 Signaling Worsens Liver Ischemia/Reperfusion Injury by Regulating M1/M2 Polarization.

Hu Yuanchang Y   Yang Chao C   Shen Gefengqiang G   Yang Shikun S   Cheng Xuyu X   Cheng Feng F   Rao Jianhua J   Wang Xuehao X  

Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 20190603 7


Hyperglycemia aggravates hepatic ischemia/reperfusion injury (IRI), but the underlying mechanism for the aggravation remains elusive. Sphingosine-1-phosphate (S1P) and sphingosine-1-phosphate receptors (S1PRs) have been implicated in metabolic and inflammatory diseases. Here, we discuss whether and how S1P/S1PRs are involved in hyperglycemia-related liver IRI. For our in vivo experiment, we enrolled diabetic patients with benign hepatic disease who had liver resection, and we used streptozotocin  ...[more]

Similar Datasets

| S-EPMC8334866 | biostudies-literature
| S-EPMC7217376 | biostudies-literature
| S-EPMC4742299 | biostudies-literature
| S-EPMC6824626 | biostudies-literature
| S-EPMC4814185 | biostudies-literature
| S-EPMC6180378 | biostudies-literature
| S-EPMC3433235 | biostudies-literature
| S-EPMC7998020 | biostudies-literature
| S-EPMC5857255 | biostudies-literature
| S-EPMC7667681 | biostudies-literature