Unknown

Dataset Information

0

Soluble Wood Smoke Extract Promotes Barrier Dysfunction in Alveolar Epithelial Cells through a MAPK Signaling Pathway.


ABSTRACT: Wildfire smoke induces acute pulmonary distress and is of particular concern to risk groups such as the sick and elderly. Wood smoke (WS) contains many of the same toxic compounds as those found in cigarette smoke (CS) including polycyclic aromatic hydrocarbons, carbon monoxide, and free radicals. CS is a well-established risk factor for respiratory diseases such as asthma and COPD. Limited studies investigating the biological effects of WS on the airway epithelium have been performed. Using a cell culture-based model, we assessed the effects of a WS-infused solution on alveolar epithelial barrier function, cell migration, and survival. The average geometric mean of particles in the WS was 178?nm. GC/MS analysis of the WS solution identified phenolic and cellulosic compounds. WS exposure resulted in a significant reduction in barrier function, which peaked after 24?hours of continuous exposure. The junctional protein E-cadherin showed a prominent reduction in response to increasing concentrations of WS. Furthermore, WS significantly repressed cell migration following injury to the cell monolayer. There was no difference in cell viability following WS exposure. Mechanistically, WS exposure induced activation of the p44/42, but not p38, MAPK signaling pathway, and inhibition of p44/42 phosphorylation prevented the disruption of barrier function and loss of E-cadherin staining. Thus, WS may contribute to the breakdown of alveolar structure and function through a p44/42 MAPK-dependent pathway and may lead to the development and/or exacerbation of respiratory pathologies with chronic exposure.

SUBMITTER: Zeglinski MR 

PROVIDER: S-EPMC6624307 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Soluble Wood Smoke Extract Promotes Barrier Dysfunction in Alveolar Epithelial Cells through a MAPK Signaling Pathway.

Zeglinski Matthew R MR   Turner Christopher T CT   Zeng Rui R   Schwartz Carley C   Santacruz Stephanie S   Pawluk Megan A MA   Zhao Hongyan H   Chan Arthur W H AWH   Carlsten Christopher C   Granville David J DJ  

Scientific reports 20190711 1


Wildfire smoke induces acute pulmonary distress and is of particular concern to risk groups such as the sick and elderly. Wood smoke (WS) contains many of the same toxic compounds as those found in cigarette smoke (CS) including polycyclic aromatic hydrocarbons, carbon monoxide, and free radicals. CS is a well-established risk factor for respiratory diseases such as asthma and COPD. Limited studies investigating the biological effects of WS on the airway epithelium have been performed. Using a c  ...[more]

Similar Datasets

| S-EPMC6263553 | biostudies-literature
2016-02-16 | GSE77942 | GEO
2016-02-16 | E-GEOD-77942 | biostudies-arrayexpress
2021-10-28 | GSE186359 | GEO
| S-EPMC3154624 | biostudies-literature
| S-EPMC6929609 | biostudies-literature
| S-EPMC4971781 | biostudies-literature
| S-EPMC9990325 | biostudies-literature
| S-EPMC3233536 | biostudies-literature
2020-06-09 | PXD019528 | Pride