Unknown

Dataset Information

0

Astaxanthin Complexes to Attenuate Muscle Damage after In Vivo Femoral Ischemia-Reperfusion.


ABSTRACT: (1) Background: Reperfusion injury refers to the cell and tissue damage induced, when blood flow is restored after an ischemic period. While reperfusion reestablishes oxygen supply, it generates a high concentration of radicals, resulting in tissue dysfunction and damage. Here, we aimed to challenge and achieve the potential of a delivery system based on astaxanthin, a natural antioxidant, in attenuating the muscle damage in an animal model of femoral hind-limb ischemia and reperfusion. (2) Methods: The antioxidant capacity and non-toxicity of astaxanthin was validated before and after loading into a polysaccharide scaffold. The capacity of astaxanthin to compensate stress damages was also studied after ischemia induced by femoral artery clamping and followed by varied periods of reperfusion. (3) Results: Histological evaluation showed a positive labeling for CD68 and CD163 macrophage markers, indicating a remodeling process. In addition, higher levels of Nrf2 and NQO1 expression in the sham group compared to the antioxidant group could reflect a reduction of the oxidative damage after 15 days of reperfusion. Furthermore, non-significant differences were observed in non-heme iron deposition in both groups, reflecting a cell population susceptible to free radical damage. (4) Conclusions: Our results suggest that the in situ release of an antioxidant molecule could be effective in improving the antioxidant defenses of ischemia/reperfusion (I/R)-damaged muscles.

SUBMITTER: Zuluaga Tamayo M 

PROVIDER: S-EPMC6627496 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


(1) Background: Reperfusion injury refers to the cell and tissue damage induced, when blood flow is restored after an ischemic period. While reperfusion reestablishes oxygen supply, it generates a high concentration of radicals, resulting in tissue dysfunction and damage. Here, we aimed to challenge and achieve the potential of a delivery system based on astaxanthin, a natural antioxidant, in attenuating the muscle damage in an animal model of femoral hind-limb ischemia and reperfusion. (2) Meth  ...[more]

Similar Datasets

| S-EPMC5679630 | biostudies-literature
| S-EPMC4323259 | biostudies-literature
| S-EPMC7175665 | biostudies-literature
| S-EPMC6609885 | biostudies-literature
| S-EPMC5156406 | biostudies-literature
| S-EPMC3717197 | biostudies-literature
| S-EPMC5225393 | biostudies-other
| S-EPMC8350322 | biostudies-literature
| S-EPMC5539087 | biostudies-literature
| S-EPMC7506543 | biostudies-literature