Noninvasive In Vivo Quantification of Adeno-Associated Virus Serotype 9-Mediated Expression of the Sodium/Iodide Symporter Under Hindlimb Ischemia and Neuraminidase Desialylation in Skeletal Muscle Using Single-Photon Emission Computed Tomography/Computed Tomography.
Ontology highlight
ABSTRACT: BACKGROUND:We propose micro single-photon emission computed tomography/computed tomography imaging of the hNIS (human sodium/iodide symporter) to noninvasively quantify adeno-associated virus 9 (AAV9)-mediated gene expression in a murine model of peripheral artery disease. METHODS:AAV9-hNIS (2×1011 viral genome particles) was injected into nonischemic or ischemic gastrocnemius muscles of C57Bl/6J mice following unilateral hindlimb ischemia ± the ?-sialidase NA (neuraminidase). Control nonischemic limbs were injected with phosphate buffered saline or remained noninjected. Twelve mice underwent micro single-photon emission computed tomography/computed tomography imaging after serial injection of pertechnetate (99mTcO4-), a NIS substrate, up to 28 days after AAV9-hNIS injection. Twenty four animals were euthanized at selected times over 1 month for ex vivo validation. Forty-two animals were imaged with 99mTcO4- ± the selective NIS inhibitor perchlorate on day 10, to ascertain specificity of radiotracer uptake. Tissue was harvested for ex vivo validation. A modified version of the U-Net deep learning algorithm was used for image quantification. RESULTS:As quantitated by standardized uptake value, there was a gradual temporal increase in 99mTcO4- uptake in muscles treated with AAV9-hNIS. Hindlimb ischemia, NA, and hindlimb ischemia plus NA increased the magnitude of 99mTcO4- uptake by 4- to 5-fold compared with nonischemic muscle treated with only AAV9-hNIS. Perchlorate treatment significantly reduced 99mTcO4- uptake in AAV9-hNIS-treated muscles, demonstrating uptake specificity. The imaging results correlated well with ex vivo well counting (r2=0.9375; P<0.0001) and immunoblot analysis of NIS protein (r2=0.65; P<0.0001). CONCLUSIONS:Micro single-photon emission computed tomography/computed tomography imaging of hNIS-mediated 99mTcO4- uptake allows for accurate in vivo quantification of AAV9-driven gene expression, which increases under ischemic conditions or neuraminidase desialylation in skeletal muscle.
SUBMITTER: Boutagy NE
PROVIDER: S-EPMC6629470 | biostudies-literature | 2019 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA