Project description:In skeletal muscle, the major isoform of β-adrenergic receptor (β-AR) is β2-AR and the minor isoform is β1-AR, which is opposite to the situation in cardiac muscle. Despite extensive studies in cardiac muscle, the physiological roles of the β-AR subtypes in skeletal muscle are not fully understood. Therefore, in this work, we compared the effects of chronic β1- or β2-AR activation with a specific β1-AR agonist, dobutamine (DOB), or a specific β2-AR agonist, clenbuterol (CB), on masseter and cardiac muscles in mice. In cardiac muscle, chronic β1-AR stimulation induced cardiac hypertrophy, fibrosis and myocyte apoptosis, whereas chronic β2-AR stimulation induced cardiac hypertrophy without histological abnormalities. In masseter muscle, however, chronic β1-AR stimulation did not induce muscle hypertrophy, but did induce fibrosis and apoptosis concomitantly with increased levels of p44/42 MAPK (ERK1/2) (Thr-202/Tyr-204), calmodulin kinase II (Thr-286) and mammalian target of rapamycin (mTOR) (Ser-2481) phosphorylation. On the other hand, chronic β2-AR stimulation in masseter muscle induced muscle hypertrophy without histological abnormalities, as in the case of cardiac muscle, concomitantly with phosphorylation of Akt (Ser-473) and mTOR (Ser-2448) and increased expression of microtubule-associated protein light chain 3-II, an autophagosome marker. These results suggest that the β1-AR pathway is deleterious and the β2-AR is protective in masseter muscle. These data should be helpful in developing pharmacological approaches for the treatment of skeletal muscle wasting and weakness.
Project description:Neural and humoral autonomic mechanisms may be important in the maintenance of blood flow in the masseter muscle (MBF). However, their interactions remain unclear. In this study, we examined interactions between neural and humoral regulation of MBF and investigated the mechanisms mediating these interactions in urethane-anesthetized rats. Stimulation of the adrenal nerve (AN) projecting to the adrenal medulla increased MBF, and this increase was mediated by β-adrenoceptors. Sectioning of the superior cervical sympathetic trunk (CST) significantly inhibited increases in MBF induced by AN stimulation during high activity in the CST, but not during low activity. AN stimulation with clonidine after CST sectioning induced a significant increased in MBF, however phenylephrine had no observable effect. Pretreatment with yohimbine or propranolol significantly inhibited the increase in the MBF. Our results suggest an interaction between β-adrenergic vasodilation evoked by circulating adrenaline and the cervical sympathetic nerves that is mediated by α2-adrenoceptors in the masseter muscle.
Project description:Carboxylesterase 3 (Ces3) is a hydrolase with a wide range of activities in liver and adipose tissue. In this study, we identified Ces3 as a major lipid droplet surface-targeting protein in adipose tissue upon cold exposure by liquid chromatography-tandem mass spectrometry. To investigate the function of Ces3 in the β-adrenergic signaling-activated adipocytes, we applied WWL229, a specific Ces3 inhibitor, or genetic inhibition by siRNA to Ces3 on isoproterenol (ISO)-treated 3T3-L1 and brown adipocyte cells. We found that blockage of Ces3 by WWL229 or siRNA dramatically attenuated the ISO-induced lipolytic effect in the cells. Furthermore, Ces3 inhibition led to impaired mitochondrial function measured by Seahorse. Interestingly, Ces3 inhibition attenuated an ISO-induced thermogenic program in adipocytes by downregulating Ucp1 and Pgc1α genes via peroxisome proliferator-activated receptor γ. We further confirmed the effects of Ces3 inhibition in vivo by showing that the thermogenesis in adipose tissues was significantly attenuated in WWL229-treated or adipose tissue-specific Ces3 heterozygous knockout (Adn-Cre-Ces3flx/wt) mice. As a result, the mice exhibited dramatically impaired ability to defend their body temperature in coldness. In conclusion, our study highlights a lipolytic signaling induced by Ces3 as a unique process to regulate thermogenesis in adipose tissue.
Project description:BACKGROUND: The phenotype of large diameter sensory afferent neurons changes in several models of neuropathic pain. We asked if similar changes also occur in "functional" pain syndromes. METHODOLOGY/PRINCIPAL FINDINGS: Acidic saline (AS, pH 4.0) injections into the masseter muscle were used to induce persistent myalgia. Controls received saline at pH 7.2. Nocifensive responses of Experimental rats to applications of Von Frey Filaments to the masseters were above control levels 1-38 days post-injection. This effect was bilateral. Expression of c-Fos in the Trigeminal Mesencephalic Nucleus (NVmes), which contains the somata of masseter muscle spindle afferents (MSA), was above baseline levels 1 and 4 days after AS. The resting membrane potentials of neurons exposed to AS (n = 167) were hyperpolarized when compared to their control counterparts (n = 141), as were their thresholds for firing, high frequency membrane oscillations (HFMO), bursting, inward and outward rectification. The amplitude of HFMO was increased and spontaneous ectopic firing occurred in 10% of acid-exposed neurons, but never in Controls. These changes appeared within the same time frame as the observed nocifensive behaviour. Ectopic action potentials can travel centrally, but also antidromically to the peripheral terminals of MSA where they could cause neurotransmitter release and activation of adjacent fibre terminals. Using immunohistochemistry, we confirmed that annulospiral endings of masseter MSA express the glutamate vesicular transporter VGLUT1, indicating that they can release glutamate. Many capsules also contained fine fibers that were labelled by markers associated with nociceptors (calcitonin gene-related peptide, Substance P, P2X3 receptors and TRPV1 receptors) and that expressed the metabotropic glutamate receptor, mGluR5. Antagonists of glutamatergic receptors given together with the 2(nd) injection of AS prevented the hypersensitivity observed bilaterally but were ineffective if given contralaterally. CONCLUSIONS/SIGNIFICANCE: Low pH leads to changes in several electrical properties of MSA, including initiation of ectopic action potentials which could propagate centrally but could also invade the peripheral endings causing glutamate release and activation of nearby nociceptors within the spindle capsule. This peripheral drive could contribute both to the transition to, and maintenance of, persistent muscle pain as seen in some "functional" pain syndromes.
Project description:Enhanced sympathetic signaling, often associated with obesity and chronic stress, is increasingly acknowledged as a contributor to cancer aggressiveness. In prostate cancer, intact sympathetic nerves are critical for tumor formation, and sympathectomy induces apoptosis and blocks tumor growth. Perineural invasion, involving enrichment of intra-prostatic nerves, is frequently observed in prostate cancer and is associated with poor prognosis. β2-adrenergic receptor (ADRB2), the most abundant receptor for sympathetic signals in prostate luminal cells, has been shown to regulate trans-differentiation of cancer cells to neuroendocrine-like cells and to affect apoptosis, angiogenesis, epithelial-mesenchymal transition, migration, and metastasis. Epidemiologic studies have shown that use of β-blockers, inhibiting β-adrenergic receptor activity, is associated with reduced prostate cancer-specific mortality. In this review, we aim to present an overview on how β-adrenergic receptor and its downstream signaling cascade influence the development of aggressive prostate cancer, primarily through regulating neuroendocrine differentiation.
Project description:Sympathetic stimulation enhances cardiac contractility by stimulating β-adrenergic signaling and protein kinase A (PKA). Recently, phospholemman (PLM) has emerged as an important PKA substrate capable of regulating cytosolic Ca(2+) transients. However, it remains unclear how PLM contributes to β-adrenergic inotropy. Here we developed a computational model to clarify PLM's role in the β-adrenergic signaling response. Simulating Na(+) and sarcoplasmic reticulum (SR) Ca(2+) clamps, we identify an effect of PLM phosphorylation on SR unloading as the key mechanism by which PLM confers cytosolic Ca(2+) adaptation to long-term β-adrenergic receptor (β-AR) stimulation. Moreover, we show that phospholamban (PLB) opposes and overtakes these actions on SR load, forming a negative feed-forward loop in the β-adrenergic signaling cascade. This network motif dominates the negative feedback conferred by β-AR desensitization and accelerates β-AR-induced inotropy. Model analysis therefore unmasks key actions of PLM phosphorylation during β-adrenergic signaling, indicating that PLM is a critical component of the fight-or-flight response.
Project description:The β-adrenoceptors (β-ARs) control many cellular processes. Here, we show that β-ARs inhibit calcium depletion-induced cell contractility and subsequent cell detachment of L6 skeletal muscle cells. The mechanism underlying the cell detachment inhibition was studied by using a quantitative cell detachment assay. We demonstrate that cell detachment induced by depletion of extracellular calcium is due to myosin- and ROCK-dependent contractility. The β-AR inhibition of L6 skeletal muscle cell detachment was shown to be mediated by the β(2)-AR and increased cAMP but was surprisingly not dependent on the classical downstream effectors PKA or Epac, nor was it dependent on PKG, PI3K or PKC. However, inhibition of potassium channels blocks the β(2)-AR mediated effects. Furthermore, activation of potassium channels fully mimicked the results of β(2)-AR activation. In conclusion, we present a novel finding that β(2)-AR signaling inhibits contractility and thus cell detachment in L6 skeletal muscle cells by a cAMP and potassium channel dependent mechanism.
Project description:A decrease in skeletal muscle strength and functional exercise capacity due to aging, frailty, and muscle wasting poses major unmet clinical needs. These conditions are associated with numerous adverse clinical outcomes including falls, fractures, and increased hospitalization. Clenbuterol, a β2-adrenergic receptor (β2AR) agonist enhances skeletal muscle strength and hypertrophy; however, its clinical utility is limited by side effects such as cardiac arrhythmias mediated by G protein signaling. We recently reported that clenbuterol-induced increases in contractility and skeletal muscle hypertrophy were lost in β-arrestin 1 knockout mice, implying that arrestins, multifunctional adapter and signaling proteins, play a vital role in mediating the skeletal muscle effects of β2AR agonists. Carvedilol, classically defined as a βAR antagonist, is widely used for the treatment of chronic systolic heart failure and hypertension, and has been demonstrated to function as a β-arrestin-biased ligand for the β2AR, stimulating β-arrestin-dependent but not G protein-dependent signaling. In this study, we investigated whether treatment with carvedilol could enhance skeletal muscle strength via β-arrestin-dependent pathways. In a murine model, we demonstrate chronic treatment with carvedilol, but not other β-blockers, indeed enhances contractile force in skeletal muscle and this is mediated by β-arrestin 1. Interestingly, carvedilol enhanced skeletal muscle contractility despite a lack of effect on skeletal muscle hypertrophy. Our findings suggest a potential unique clinical role of carvedilol to stimulate skeletal muscle contractility while avoiding the adverse effects with βAR agonists. This distinctive signaling profile could present an innovative approach to treating sarcopenia, frailty, and secondary muscle wasting.
Project description:The urinary tract is highly innervated by autonomic nerves which are essential in urinary tract development, the production of growth factors, and the control of homeostasis. These neural signals may become dysregulated in several genitourinary (GU) disease states, both benign and malignant. Accordingly, the autonomic nervous system is a therapeutic target for several genitourinary pathologies including cancer, voiding dysfunction, and obstructing nephrolithiasis. Adrenergic receptors (adrenoceptors) are G-Protein coupled-receptors that are distributed throughout the body. The major function of α1-adrenoceptors is signaling smooth muscle contractions through GPCR and intracellular calcium influx. Pharmacologic intervention of α-and β-adrenoceptors is routinely and successfully implemented in the treatment of benign urologic illnesses, through the use of α-adrenoceptor antagonists. Furthermore, cell-based evidence recently established the antitumor effect of α1-adrenoceptor antagonists in prostate, bladder and renal tumors by reducing neovascularity and impairing growth within the tumor microenvironment via regulation of the phenotypic epithelial-mesenchymal transition (EMT). There has been a significant focus on repurposing the routinely used, Food and Drug Administration-approved α1-adrenoceptor antagonists to inhibit GU tumor growth and angiogenesis in patients with advanced prostate, bladder, and renal cancer. In this review we discuss the current evidence on (a) the signaling events of the autonomic nervous system mediated by its cognate α- and β-adrenoceptors in regulating the phenotypic landscape (EMT) of genitourinary organs; and (b) the therapeutic significance of targeting this signaling pathway in benign and malignant urologic disease. Video abstract.
Project description:Environmental enrichment (EE) is a rodent behavioral paradigm that can model the cognitive benefits to humans associated with intellectual activity and exercise. We recently discovered EE's anti-inflammatory protection of brain microglia against soluble oligomers of human amyloid β-protein (oAβ). Mechanistically, we report that the key factor in microglial protection by EE is chronically enhanced β-adrenergic signaling. Quantifying microglial morphology and inflammatory RNA profiles revealed that mice in standard housing (SH) fed the β-adrenergic agonist isoproterenol experienced similar protection of microglia against oAβ-induced inflammation as did mice in EE Conversely, mice in EE fed the β-adrenergic antagonist propranolol lost microglial protection against oAβ. Mice lacking β1/β2-adrenergic receptors showed no protection of microglia by EE In SH mice, quantification of norepinephrine in hippocampus and interstitial fluid showed that oAβ disrupted norepinephrine homeostasis, and microglial-specific analysis of β2-adrenergic receptors indicated a decreased receptor level. Both features were rescued by EE Thus, enhanced β-adrenergic signaling at the ligand and receptor levels mediates potent benefits of EE on microglial inflammation induced by human Aβ oligomers in vivo.