Unknown

Dataset Information

0

Redox Modulators Determine Luminol Luminescence Generated by Porphyrin-Coordinated Iron and May Repress "Suicide Inactivation".


ABSTRACT: Iron porphyrin catalysts of the luminol reaction (horseradish peroxidase, hemoglobin, cytochrome c, and hemin) interact with diverse reducing compounds. Here, it is demonstrated how the chemiluminescence yield is modulated by such interactions. The compounds accepted as substrates protect the catalyst against the "suicide inactivation" caused by high peroxide concentrations. The reducing agents not accepted by the catalyst inhibit light production either by generating a futile redox cycle of the luminophore or by irreversibly inactivating the catalytic center. In the case of a futile cycle, light emission resumes as soon as the reducing agents in the reaction are consumed, whereas with an irreversible inactivation, light emission does not recover. The characteristics of luminescence enhancement and quenching depending on interfering agents are also reported here. They reveal details about the relative redox potentials of the involved compounds. It is discussed how this should be considered when the luminol reaction is used for quantitative analyses and when unpurified samples with a broad compound matrix are to be assayed.

SUBMITTER: Plieth C 

PROVIDER: S-EPMC6645248 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Redox Modulators Determine Luminol Luminescence Generated by Porphyrin-Coordinated Iron and May Repress "Suicide Inactivation".

Plieth Christoph C  

ACS omega 20180928 9


Iron porphyrin catalysts of the luminol reaction (horseradish peroxidase, hemoglobin, cytochrome <i>c</i>, and hemin) interact with diverse reducing compounds. Here, it is demonstrated how the chemiluminescence yield is modulated by such interactions. The compounds accepted as substrates protect the catalyst against the "suicide inactivation" caused by high peroxide concentrations. The reducing agents not accepted by the catalyst inhibit light production either by generating a futile redox cycle  ...[more]

Similar Datasets

| S-EPMC1163592 | biostudies-other
| S-EPMC8177003 | biostudies-literature
| S-EPMC6472895 | biostudies-literature
| S-EPMC4985641 | biostudies-literature
| S-EPMC1151582 | biostudies-other
| S-EPMC6649120 | biostudies-literature
| S-EPMC1133310 | biostudies-other
| S-EPMC6239908 | biostudies-literature
| S-EPMC8121509 | biostudies-literature
| S-EPMC8005208 | biostudies-literature