Unknown

Dataset Information

0

Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length Spike protein of Middle East respiratory syndrome coronavirus.


ABSTRACT: Middle East respiratory syndrome coronavirus (MERS-CoV) causes an acute and severe lower respiratory illness as well as vomiting, diarrhea, and renal failure. Because no licensed MERS-CoV vaccines are currently available, preventive and therapeutic measures are urgently needed. The surface spike (S) glycoprotein of MERS-CoV, which binds to the cellular receptor dipeptidyl peptidase 4 (DPP4), is considered as a major target for MERS-CoV vaccine development. Here, we designed recombinant replication-deficient adenovirus-based vaccines expressing the N-terminal domain (rAd/NTD) and receptor-binding domain (rAd/RBD) of the MERS-CoV S1 subunit and full-length Spike protein (rAd/Spike). We found that immunization with candidate vaccines via intranasal route induced S1-specific IgG antibodies and neutralizing antibodies against MERS spike pseudotyped virus. Especially, rAd/Spike induced the highest neutralizing antibody titer and the strongest cytokine-induced T cell responses among the three candidate vaccines. To compare the immune responses induced by different administration routes, rAd/Spike was administered via intranasal, sublingual, or intramuscular route. All these administration routes exhibited neutralizing effects in the serum. MERS-CoV-specific neutralizing IgA antibodies in the bronchoalveolar lavage fluid were only induced by intranasal and sublingual administration but not by intramuscular administration. Intranasal administration with rAd/Spike also created resident memory CD8 T cells in the airway and lung parenchyma. Taken together, our results showed that both the humoral and cellular immune responses are highly induced by rAd/Spike administration, suggesting that rAd/Spike may confer protection against MERS-CoV infection.

SUBMITTER: Kim MH 

PROVIDER: S-EPMC6645677 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length Spike protein of Middle East respiratory syndrome coronavirus.

Kim Myung Hee MH   Kim Hyun Jik HJ   Chang Jun J  

PloS one 20190722 7


Middle East respiratory syndrome coronavirus (MERS-CoV) causes an acute and severe lower respiratory illness as well as vomiting, diarrhea, and renal failure. Because no licensed MERS-CoV vaccines are currently available, preventive and therapeutic measures are urgently needed. The surface spike (S) glycoprotein of MERS-CoV, which binds to the cellular receptor dipeptidyl peptidase 4 (DPP4), is considered as a major target for MERS-CoV vaccine development. Here, we designed recombinant replicati  ...[more]

Similar Datasets

| S-EPMC9240059 | biostudies-literature
| S-EPMC3791741 | biostudies-literature
| S-EPMC4515128 | biostudies-literature
| S-EPMC3098319 | biostudies-literature
| S-EPMC9671113 | biostudies-literature
| S-EPMC4152846 | biostudies-literature
| S-EPMC7482114 | biostudies-literature
| S-EPMC6194913 | biostudies-literature
| S-EPMC6542157 | biostudies-literature
| S-EPMC7122697 | biostudies-literature