Unknown

Dataset Information

0

Engineering Water and Solute Dynamics and Maximal Use of CNT Surface Area for Efficient Water Desalination.


ABSTRACT: While polymer-based membranes and the consistent plants and elements have long been considered and optimized, there are only few studies on optimization of the new generation of carbon-based porous membranes for water desalination. By modeling the elements and their corresponding parameters in a vertical configuration via COMSOL Multiphysics software, an experimental setup was modified that contained various bare and carbon nanotube (CNT)-covered microprocessed porous membranes in parallel and in series. Several design parameters such as inlet pressure, length of outlet, vertical distance of the parallel membranes, and horizontal distances of the series membranes were optimized. Taking advantage of the uttermost surface area of CNTs and the engineered particle trajectory, almost 90% NaCl rejection and 97% Allura red rejection were obtained with very high permeation values. Considering microsized outlets, the results of particle rejections are outstanding owing to the smart design of the setup. The results of this work can be extended to larger and smaller scales up to the point where the governing equations still hold.

SUBMITTER: Kazemi AS 

PROVIDER: S-EPMC6648526 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Engineering Water and Solute Dynamics and Maximal Use of CNT Surface Area for Efficient Water Desalination.

Kazemi Asieh Sadat AS   Noroozi Ali Akbar AA   Khamsavi Anousha A   Mazaheri Ali A   Hosseini Seiyed Mossa SM   Abdi Yaser Y  

ACS omega 20190416 4


While polymer-based membranes and the consistent plants and elements have long been considered and optimized, there are only few studies on optimization of the new generation of carbon-based porous membranes for water desalination. By modeling the elements and their corresponding parameters in a vertical configuration via COMSOL Multiphysics software, an experimental setup was modified that contained various bare and carbon nanotube (CNT)-covered microprocessed porous membranes in parallel and i  ...[more]

Similar Datasets

| S-EPMC4840374 | biostudies-other
| S-EPMC6774058 | biostudies-literature
| S-EPMC4893190 | biostudies-literature
| S-EPMC8568261 | biostudies-literature
| S-EPMC1567875 | biostudies-literature
| S-EPMC9130493 | biostudies-literature
| S-EPMC5670249 | biostudies-literature
| S-EPMC7699921 | biostudies-literature
| S-EPMC6645096 | biostudies-literature