Unknown

Dataset Information

0

In Situ Attachment of Acrylamido Sulfonic Acid-Based Monomer in Terpolymer Hydrogel Optimized by Response Surface Methodology for Individual and/or Simultaneous Removal(s) of M(III) and Cationic Dyes.


ABSTRACT: Herein, grafting of starch (STR) and in situ strategic inclusion of 2-(3-(acrylamido)propylamido)-2-methylpropane sulfonic acid (APMPS) via solution polymerization of 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) and acrylamide (AM) have resulted in the synthesis of smart STR-grafted-AMPS-co-APMPS-co-AM (i.e., STR-g-TerPol) interpenetrating terpolymer (TerPol) network hydrogels. For fabricating the optimum hydrogel showing excellent physicochemical properties and recyclability, amounts of ingredients and temperature of synthesis have been optimized using multistage response surface methodology. STR-g-TerPol bearing the maximum swelling ability, along with the retention of network integrity, has been employed for individual and/or simultaneous removal(s) of metal ions (i.e., M(III)), such as Bi(III) and Sb(III), and dyes, such as tris(4-(dimethylamino)phenyl)methylium chloride (i.e., crystal violet) and (7-amino-8-phenoxazin-3-ylidene)-diethylazanium dichlorozinc dichloride (i.e., brilliant cresyl blue). The in situ strategic protrusion of APMPS, grafting of STR into the TerPol matrix, variation of crystallinity, thermal stabilities, surface properties, mechanical properties, swellability, adsorption capacities (ACs), and ligand-selective superadsorption have been inferred via analyses of unadsorbed and/or adsorbed STR-g-TerPol using Fourier transform infrared (FTIR), 1H/13C NMR, UV-vis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and rheological analyses and measuring the lower critical solution temperature, % gel content, pH at point of zero charge (pHPZC), and network parameters, such as ?c and M c. The prevalence of covalent, ionic (I), and variegated interactions between STR-g-TerPol and M(III) has been understood through FTIR analyses, fitting of kinetics data to the pseudosecond-order model, and by the measurement of activation energies of adsorption. The formation of H-aggregate type dimers and hypochromic and hypsochromic shifts has been explained via UV-vis analyses during individual and/or simultaneous removal(s) of cationic dyes. Several isotherm models were fitted to the equilibrium experimental data, of which Langmuir and combined Langmuir-Freundlich models have been best fitted for individual Bi(III)/Sb(III) and simultaneous Sb(III) + Bi(III) removals, respectively. Thermodynamically spontaneous chemisorption processes have shown the maximum ACs of 1047.39/282.39 and 932.08/137.85 mg g-1 for Bi(III) and Sb(III), respectively, at 303 K, adsorbent dose = 0.01 g, and initial concentration of M(III) = 1000/30 ppm. The maximum ACs have been changed to 173.09 and 136.02 mg g-1 for Bi(III) and Sb(III), respectively, for binary Sb(III) + Bi(III) removals at 303 K, adsorbent dose = 0.01 g, and initial concentration of Bi(III)/Sb(III) at 30/5 and 5/30 ppm.

SUBMITTER: Singha NR 

PROVIDER: S-EPMC6648733 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

In Situ Attachment of Acrylamido Sulfonic Acid-Based Monomer in Terpolymer Hydrogel Optimized by Response Surface Methodology for Individual and/or Simultaneous Removal(s) of M(III) and Cationic Dyes.

Singha Nayan Ranjan NR   Dutta Arnab A   Mahapatra Manas M   Roy Joy Sankar Deb JSD   Mitra Madhushree M   Deb Mousumi M   Chattopadhyay Pijush Kanti PK  

ACS omega 20190122 1


Herein, grafting of starch (STR) and in situ strategic inclusion of 2-(3-(acrylamido)propylamido)-2-methylpropane sulfonic acid (APMPS) via solution polymerization of 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) and acrylamide (AM) have resulted in the synthesis of smart STR-grafted-AMPS-<i>co</i>-APMPS-<i>co</i>-AM (i.e., STR-<i>g</i>-TerPol) interpenetrating terpolymer (TerPol) network hydrogels. For fabricating the optimum hydrogel showing excellent physicochemical properties and recycl  ...[more]

Similar Datasets

| S-EPMC6304747 | biostudies-literature
| S-EPMC4384641 | biostudies-literature
| S-EPMC8126049 | biostudies-literature
| S-EPMC6640734 | biostudies-literature
| S-EPMC8252373 | biostudies-literature