Unknown

Dataset Information

0

Facile Preparation of Porous Rod-like Cu x Co3-x O4/C Composites via Bimetal-Organic Framework Derivation as Superior Anodes for Lithium-Ion Batteries.


ABSTRACT: To meet growing demand of energy, lithium-ion batteries (LIBs) are under enormous attention. The development of well-designed ternary transition metal oxides with high capacity and high stability is important and challengeable for using as electrode materials for LIBs. Herein, a new and highly reversible carbon-coated Cu-Co bimetal oxide composite material (Cu x Co3-x O4/C) with a one-dimensional (1D) porous rod-like structure was prepared through a bimetal-organic framework (BMOF) template strategy followed by a morphology-inherited annealing treatment. During the annealing process, carbon derived from organic frameworks in situ fully covered the synthesized bimetal oxide nanoparticles, and a large number of porous spaces were generated in the MOF-derived final samples, thus ensuring high electrical conductivity and fast ion diffusion. Benefiting from the synergetic effect of bimetals, the unique 1D porous structure, and conductive carbon network, the as-synthesized Cu x Co3-x O4/C delivers a high capacity retention up to 92.4% after 100 cycles, with a high reversible capacity still maintained at 900 mA h g-1, indicating an excellent cycling stability. Also, a good rate performance is demonstrated. These outstanding electrochemical properties show us a concept of synthesis of MOF-derived bimetal oxides combining both advantages of carbon incorporation and porous structure for progressive lithium-ion batteries.

SUBMITTER: Hou L 

PROVIDER: S-EPMC6648762 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Facile Preparation of Porous Rod-like Cu <sub><i>x</i></sub> Co<sub>3-<i>x</i></sub> O<sub>4</sub>/C Composites via Bimetal-Organic Framework Derivation as Superior Anodes for Lithium-Ion Batteries.

Hou Li L   Jiang Xinyu X   Jiang Yang Y   Jiao Tifeng T   Cui Ruiwen R   Deng Shuolei S   Gao Jiajia J   Guo Yuanyuan Y   Gao Faming F  

ACS omega 20190425 4


To meet growing demand of energy, lithium-ion batteries (LIBs) are under enormous attention. The development of well-designed ternary transition metal oxides with high capacity and high stability is important and challengeable for using as electrode materials for LIBs. Herein, a new and highly reversible carbon-coated Cu-Co bimetal oxide composite material (Cu <i><sub>x</sub></i> Co<sub>3-<i>x</i></sub> O<sub>4</sub>/C) with a one-dimensional (1D) porous rod-like structure was prepared through a  ...[more]

Similar Datasets

| S-EPMC10416568 | biostudies-literature
| S-EPMC10018519 | biostudies-literature
| S-EPMC4586494 | biostudies-other
| S-EPMC3610094 | biostudies-literature
| S-EPMC7469398 | biostudies-literature
| S-EPMC9920744 | biostudies-literature
| S-EPMC6835662 | biostudies-literature
| S-EPMC5580042 | biostudies-literature
| S-EPMC6599802 | biostudies-literature
| S-EPMC5548767 | biostudies-literature