Unknown

Dataset Information

0

ER? Accelerates Diabetic Wound Healing by Ameliorating Hyperglycemia-Induced Persistent Oxidative Stress.


ABSTRACT: Delayed wound healing in diabetic patients is a serious diabetic complication, resulting in major health problems as well as high mortality and disability. The detailed mechanism still needs to be fully understood. In this study, we aim to investigate potential mechanisms and explore an efficient strategy for clinical treatment of diabetic wound healing. Human umbilical endothelial cells were exposed to hyperglycemia for 4 days, then switched to normoglycemia for an additional 4 days. The cells were harvested for the analysis of reactive oxygen species (ROS) generation, gene expression and VEGF signaling pathway. Furthermore, the diabetic wound model was established in rats for the evaluation of wound healing rates under the treatment of either ER? agonist/antagonist or SOD mimetic MnTBAP. Our results show that transient hyperglycemia exposure results in persistent ROS overgeneration after the switch to normoglycemia, along with suppressed expression of ER?, SOD2, and the VEGF signaling pathway. Either ER? expression or activation diminishes ROS generation. In vivo experiments with diabetic rats show that ER? activation or SOD mimetic MnTBAP diminishes ROS generation in tissues and accelerates diabetic wound healing. Transient hyperglycemia exposure induces ROS generation and suppresses ER? expression, subsequently resulting in SOD2 suppression with additional elevated ROS generation. This forms a positive-feed forward loop for ROS generation with persistent oxidative stress. ER? expression or activation breaks this loop and ameliorates this effect, thereby accelerating diabetic wound healing. We conclude that ER? accelerates diabetic wound healing by ameliorating hyperglycemia-induced persistent oxidative stress. This provides a new strategy for clinical treatment of diabetic wound healing based on ER? activation.

SUBMITTER: Zhou X 

PROVIDER: S-EPMC6667639 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

ERβ Accelerates Diabetic Wound Healing by Ameliorating Hyperglycemia-Induced Persistent Oxidative Stress.

Zhou Xueqing X   Li Min M   Xiao Meifang M   Ruan Qiongfang Q   Chu Zhigang Z   Ye Ziqing Z   Zhong Liyan L   Zhang Haimou H   Huang Xiaodong X   Xie Weiguo W   Li Ling L   Yao Paul P  

Frontiers in endocrinology 20190724


Delayed wound healing in diabetic patients is a serious diabetic complication, resulting in major health problems as well as high mortality and disability. The detailed mechanism still needs to be fully understood. In this study, we aim to investigate potential mechanisms and explore an efficient strategy for clinical treatment of diabetic wound healing. Human umbilical endothelial cells were exposed to hyperglycemia for 4 days, then switched to normoglycemia for an additional 4 days. The cells  ...[more]

Similar Datasets

| S-EPMC1892363 | biostudies-literature
| S-EPMC1698814 | biostudies-other
| S-EPMC7946048 | biostudies-literature
| S-EPMC6763603 | biostudies-literature
| S-EPMC3276738 | biostudies-literature
| S-EPMC8184911 | biostudies-literature
| S-EPMC7467375 | biostudies-literature
| S-EPMC7736285 | biostudies-literature
| S-EPMC7476113 | biostudies-literature