Unknown

Dataset Information

0

SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of ?-Fe2O3/Fe3O4 Ratio and Coating Composition on Magnetic Properties.


ABSTRACT: Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great potential in biomedicine due to their high intrinsic magnetization behaviour. These are small particles of magnetite or maghemite, and when coated, their surface oxidation is prevented, their aggregation tendency is reduced, their dispersity is improved, and the stability and blood circulation time are increased, which are mandatory requirements in biomedical applications. In this work, SPIONs were synthesized in air through a reduction-precipitation method and coated with four different polymers (Polyethylene glycol(PEG) 1000/6000 and dextran T10/T70). All the synthesized samples were structurally and magnetically characterized by transmission electron microscopy, Fourier transform infra-red spectroscopy, X-ray powder diffraction, Mössbauer spectroscopy, and Superconducting Quantum Interference Device (SQUID) magnetometry. SPIONs centrifuged and dried in vacuum with an average diameter of at least 7.5 nm and a composition ?60% of maghemite and ?40% of magnetite showed the best magnetization results, namely a saturation magnetization of ~64 emu/g at 300 K, similar to the best reported values for SPIONs prepared in controlled atmosphere. As far as SPIONs' coatings are concerned, during their preparation procedure, surface polymers must be introduced after the SPIONs' precipitation. Furthermore, polymers with shorter chains do not affect the SPIONs' magnetization performance, although longer chain polymers significantly decrease the coated particle magnetization values, which is undesirable.

SUBMITTER: Matos JC 

PROVIDER: S-EPMC6669523 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of γ-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> Ratio and Coating Composition on Magnetic Properties.

Matos Joana C JC   Gonçalves M Clara MC   Pereira Laura C J LCJ   Vieira Bruno J C BJC   Waerenborgh João Carlos JC  

Nanomaterials (Basel, Switzerland) 20190628 7


Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great potential in biomedicine due to their high intrinsic magnetization behaviour. These are small particles of magnetite or maghemite, and when coated, their surface oxidation is prevented, their aggregation tendency is reduced, their dispersity is improved, and the stability and blood circulation time are increased, which are mandatory requirements in biomedical applications. In this work, SPIONs were synthesized in air through a  ...[more]

Similar Datasets

| S-EPMC8720089 | biostudies-literature
| S-EPMC8001642 | biostudies-literature
| S-EPMC6184715 | biostudies-literature
| S-EPMC7466472 | biostudies-literature
| S-EPMC3211284 | biostudies-literature
| S-EPMC5827803 | biostudies-literature
| S-EPMC8199491 | biostudies-literature
| S-EPMC4763259 | biostudies-literature
| S-EPMC7235326 | biostudies-literature
| S-EPMC8398533 | biostudies-literature