Unknown

Dataset Information

0

Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels.


ABSTRACT: Kisspeptin and its cognate receptor, GPR54, are critical for reproductive development and for the regulation of gonadotropin-releasing hormone (GnRH) secretion. Although kisspeptin has been found to depolarize GnRH neurons, the underlying ionic mechanism has not been elucidated. Presently, we found that kisspeptin depolarized GnRH neurons in a concentration-dependent manner with a maximum depolarization of 22.6 +/- 0.6 mV and EC(50) of 2.8 +/- 0.2 nM. Under voltage-clamp conditions, kisspeptin induced an inward current of 18.2 +/- 1.6 pA (V(hold) = -60 mV) that reversed near -115 mV in GnRH neurons. The more negative reversal potential than E(K)(+) (-90 mV) was caused by the concurrent inhibition of barium-sensitive, inwardly rectifying (Kir) potassium channels and activation of sodium-dependent, nonselective cationic channels (NSCCs). Indeed, reducing extracellular Na(+) (to 5 mM) essentially eliminated the kisspeptin-induced inward current. The current-voltage relationships of the kisspeptin-activated NSCC currents exhibited double rectification with negative slope conductance below -40 mV in the majority of the cells. Pharmacological examination showed that the kisspeptin-induced inward currents were blocked by TRPC (canonical transient receptor potential) channel blockers 2-APB (2-aminoethyl diphenylborinate), flufenamic acid, SKF96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), and Cd(2+), but not by lanthanum (100 microM). Furthermore, single-cell reverse transcription-PCR analysis revealed that TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 subunits were expressed in GnRH neurons. Therefore, it appears that kisspeptin depolarizes GnRH neurons through activating TRPC-like channels and, to a lesser extent, inhibition of Kir channels. These actions of kisspeptin contribute to the pronounced excitation of GnRH neurons that is critical for mammalian reproduction.

SUBMITTER: Zhang C 

PROVIDER: S-EPMC6670958 | biostudies-literature | 2008 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels.

Zhang Chunguang C   Roepke Troy A TA   Kelly Martin J MJ   Rønnekleiv Oline K OK  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20080401 17


Kisspeptin and its cognate receptor, GPR54, are critical for reproductive development and for the regulation of gonadotropin-releasing hormone (GnRH) secretion. Although kisspeptin has been found to depolarize GnRH neurons, the underlying ionic mechanism has not been elucidated. Presently, we found that kisspeptin depolarized GnRH neurons in a concentration-dependent manner with a maximum depolarization of 22.6 +/- 0.6 mV and EC(50) of 2.8 +/- 0.2 nM. Under voltage-clamp conditions, kisspeptin i  ...[more]

Similar Datasets

| S-EPMC4104922 | biostudies-literature
| S-EPMC6725899 | biostudies-literature
| S-EPMC3078701 | biostudies-literature
| S-EPMC3619287 | biostudies-literature
| S-EPMC2774467 | biostudies-literature
| S-EPMC2793332 | biostudies-literature
| S-EPMC6325553 | biostudies-literature
| S-EPMC9844031 | biostudies-literature
| S-EPMC3095824 | biostudies-literature
| S-EPMC2671904 | biostudies-literature