Unknown

Dataset Information

0

MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation.


ABSTRACT: Muscle-specific tyrosine kinase receptor (MuSK) has been believed to be mainly expressed and functional in muscle, in which it mediates the formation of neuromuscular junctions. Here we show that MuSK is expressed in the brain, particularly in neurons, as well as in non-neuronal tissues. We also provide evidence that MuSK expression in the hippocampus is required for memory consolidation, because temporally restricted knockdown after training impairs memory retention. Hippocampal disruption of MuSK also prevents the learning-dependent induction of both cAMP response element binding protein (CREB) phosphorylation and CCAAT enhancer binding protein beta (C/EBPbeta) expression, suggesting that the role of MuSK during memory consolidation critically involves the CREB-C/EBP pathway. Furthermore, we found that MuSK also plays an important role in mediating hippocampal oscillatory activity in the theta frequency as well as in the induction and maintenance of long-term potentiation, two synaptic responses that correlate with memory formation. We conclude that MuSK plays an important role in brain functions, including memory formation. Therefore, its expression and role are broader than what was believed previously.

SUBMITTER: Garcia-Osta A 

PROVIDER: S-EPMC6674217 | biostudies-literature | 2006 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation.

Garcia-Osta Ana A   Tsokas Panayiotis P   Pollonini Gabriella G   Landau Emmanuel M EM   Blitzer Robert R   Alberini Cristina M CM  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20060701 30


Muscle-specific tyrosine kinase receptor (MuSK) has been believed to be mainly expressed and functional in muscle, in which it mediates the formation of neuromuscular junctions. Here we show that MuSK is expressed in the brain, particularly in neurons, as well as in non-neuronal tissues. We also provide evidence that MuSK expression in the hippocampus is required for memory consolidation, because temporally restricted knockdown after training impairs memory retention. Hippocampal disruption of M  ...[more]

Similar Datasets

| S-EPMC3498958 | biostudies-literature
| S-EPMC8225794 | biostudies-literature
| S-EPMC8486000 | biostudies-literature
| S-EPMC2929390 | biostudies-literature
| S-EPMC4785958 | biostudies-literature
| S-EPMC3279365 | biostudies-literature
| S-EPMC3199337 | biostudies-literature
| S-EPMC3618391 | biostudies-literature
| S-EPMC6601897 | biostudies-literature
| S-EPMC3890840 | biostudies-other