Microfluidic In-Flow Decantation Technique Using Stepped Pillar Arrays and Hydraulic Resistance Tuners.
Ontology highlight
ABSTRACT: Separating the particles from the liquid component of sample solutions is important for several microfluidic-based sample preparations and/or sample handling techniques, such as plasma separation from whole blood, sheath-free flow focusing, particle enrichment etc. This paper presents a microfluidic in-flow decantation technique that provides the separation of particles from particle-free fluid while in-flow. The design involves the expansion of sample fluid channel in lateral and depth directions, thereby producing a particle-free layer towards the walls of the channel, followed by gradual extraction of this particle-free fluid through a series of tiny openings located towards one-end of the depth-direction. The latter part of this design is quite crucial in the functionality of this decantation technique and is based on the principle called wee-extraction. The design, theory, and simulations were presented to explain the principle-of-operation. To demonstrate the proof-of-principle, the experimental characterization was performed on beads, platelets, and blood samples at various hematocrits (2.5%-45%). The experiments revealed clog-free separation of particle-free fluid for at least an hour of operation of the device and demonstrated purities close to 100% and yields as high as 14%. The avenues to improve the yield are discussed along with several potential applications.
SUBMITTER: Eluru G
PROVIDER: S-EPMC6680991 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA