Efficient Charge Transfer in Heterostructures of CdS/NaTaO3 with Improved Visible-Light-Driven Photocatalytic Activity.
Ontology highlight
ABSTRACT: Photocatalyst NaTaO3 with a cube-shaped morphology and an average particle size of 100 nm was synthesized using an effortless hydrothermal method. The composite heterostructures of CdS/NaTaO3 with variable concentrations of CdS were fabricated after the surface functionalization of bare NaTaO3 using 3-mercaptopropionic acid. As-synthesized photocatalysts were characterized using powder X-ray diffraction analysis, Raman spectroscopy, field-emission scanning and transmission electron microscopies with energy-dispersive X-ray spectroscopy furnished with elemental mapping, multipoint Brunauer-Emmett-Teller (BET), and UV-vis diffuse reflectance spectroscopy. Average lifetime (?avg) of photoexcitons in heterostructures was studied using photoluminescence (PL) empowered with the time-correlated single-photon counting technique. The diminishing PL peak intensity and reduced average lifetime (?avg) of photoexcitons in heterostructures indicate the inhibition of photoexciton recombination along with efficient photoexciton exchange between heterostructures. As-synthesized heterostructures demonstrate enhanced visible-light harvesting and appreciably increased the photocatalytic performance toward the degradation of dye rhodamine B. This work highlights the importance of heterostructures with new archetypes which may provide a lead to develop highly capable and reusable photocatalysts to organic dye degradation.
SUBMITTER: Singh AP
PROVIDER: S-EPMC6682145 | biostudies-literature | 2019 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA