ABSTRACT: PURPOSE:Lung cancer in never smokers is recognized as a distinct molecular, clinicopathologic and epidemiologic entity. The aim of the study was to investigate the molecular profile in Swiss never smokers with lung adenocarcinoma and to correlate the mutation status with clinicopathologic and demographic patient characteristics and outcome. METHODS:One hundred thirty-eight never smokers diagnosed with lung adenocarcinoma at the University Hospital Zurich between 2011-2018 were included in the study. Data from the electronic medical records were reviewed to characterize clinicopathologic and demographic features, molecular profile, treatment and outcome. RESULTS:The majority of patients were female (58.7%) with a median age at diagnosis of 64.5 years (range, 27.1-94.2 years). The most common mutations were EGFR (58.7%) followed by ALK (12.3%), TP53 (5.8%), MET (5.8%), KRAS (4.3%), ERBB2 (4.3%), PIK3CA (2.9%), BRAF (2.2%), ROS1 (1.4%), RET (1.4%), CTNNB1 (0.7%), PARP1 (0.7%), TET1 (0.7%) and PIK3CG (0.7%). Median overall survival (mOS) was 51.0 months (mo). Early clinical stage (p = 0.002) and treatment with targeted therapy (HR 2.53, 95% CI 1.35-4.74, p = 0.004) were independently associated with longer mOS. Patients with oncogenic driver mutations had significantly longer mOS (52.2 mo) compared to patients without mutations (16.9 mo) (HR 3.38, 95% CI 1.52-7.55, p = 0.003). Besides, patients with EGFR mutated (57.8 mo) or ALK rearranged (59.9 mo) tumors had significantly longer mOS compared to the EGFR wildtype (35.0 mo), ALK wildtype (46.5 mo) and pan-negative (16.9 mo) cohorts (HR 2.35, 95% CI 1.37-4.04, p = 0.002; HR 7.80, 95% CI 3.28-18.55, p < 0.001; HR 3.96, 95% CI 1.21-12.95, p = 0.023 and HR 34.78, 95% CI 3.48-34.65, p = 0.003). CONCLUSION:Never smokers with lung adenocarcinoma display distinct clinicopathologic and molecular features and are characterized by a high incidence of targetable mutations. Never smokers with targetable mutations have significantly longer survival compared to patients without mutations.