Unknown

Dataset Information

0

Polyacrylamide Hydrogels Produce Hydrogen Peroxide from Osmotic Swelling in Aqueous Media.


ABSTRACT: This work demonstrates that hydrogen peroxide (H2O2) is generated in weak polyacrylamide hydrogels due to mechanochemical reactions to osmotic swelling. Hydrogels are important tools and materials for many biomedical applications, particularly for growth of stem cells. However, swollen gels are under constant tension, which makes their individual chains susceptible to mechanochemical bond breakage. In this work, an assay was developed to measure the generation of H2O2 as a result of hydrogel swelling. Polyacrylamide hydrogels with both weak disulfide and strong PEG-diacrylate crosslinkers were synthesized and swelled. H2O2 generation increased in the presence of weaker crosslinkers, up to 30 ?M H2O2, whereas stronger crosslinkers reduced this to 5 ?M H2O2. H2O2 levels decreased when swelled in the presence of dextran to reduce osmotic stress or increased if the gels were conjugated to an acrylated surface. Finally, H2O2 continued to form for days after the gels had reached their equilibrium sizes, independently of dissolved oxygen. The results of this work impact those working in the 3D cell culture community and demonstrate that even well-characterized systems undergo mechanochemical processes in mild environments.

SUBMITTER: Parameswar AV 

PROVIDER: S-EPMC6687575 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polyacrylamide Hydrogels Produce Hydrogen Peroxide from Osmotic Swelling in Aqueous Media.

Parameswar Ashray V AV   Fitch Kirsten R KR   Bull David S DS   Duke Victoria R VR   Goodwin Andrew P AP  

Biomacromolecules 20180727 8


This work demonstrates that hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is generated in weak polyacrylamide hydrogels due to mechanochemical reactions to osmotic swelling. Hydrogels are important tools and materials for many biomedical applications, particularly for growth of stem cells. However, swollen gels are under constant tension, which makes their individual chains susceptible to mechanochemical bond breakage. In this work, an assay was developed to measure the generation of H<sub>2</s  ...[more]

Similar Datasets

| S-EPMC6765303 | biostudies-literature
| S-EPMC8336450 | biostudies-literature
| S-EPMC4584152 | biostudies-literature
| S-EPMC3705218 | biostudies-literature
| S-EPMC9130276 | biostudies-literature
2009-04-23 | GSE12602 | GEO
| S-EPMC3775708 | biostudies-literature
| S-EPMC1206928 | biostudies-other
| S-EPMC7481780 | biostudies-literature
| S-EPMC5779864 | biostudies-other