Unknown

Dataset Information

0

Alteration of Bile Acid and Cholesterol Biosynthesis and Transport by Perfluorononanoic Acid (PFNA) in Mice.


ABSTRACT: Perfluorochemicals produce hepatotoxic effects via activation of peroxisome proliferator-activated receptor alpha (PPAR?) and constitutive androstane receptor (CAR) nuclear receptors in animals. Bile formation is one major liver function. But it remains unknown whether perfluorochemicals alter metabolism of bile acids (BAs) in liver. The present study was designed to determine the impact of perfluorononanoic acid (PFNA) on BA and cholesterol homeostasis in mice. A single dose of PFNA (0.1?mmol/kg) was intraperitoneally administered to adult male wild-type (WT), PPAR?-null, and CAR-null mice. PFNA caused cholestasis in the WT mice, indicated by increased serum alanine aminotransferase, hyperbilirubinemia, elevated BA concentrations in mouse serum, and appearance of bile plugs in mouse liver. In addition, PFNA decreased total and some individual BAs in mouse liver. PFNA increased the concentrations of total and taurine-conjugated, as well as some individual BAs in the serum of WT and CAR-null mice but not in PPAR?-null mice, indicating a PPAR?-dependent mechanism. PFNA decreased mRNA expression of most BA-related transporters (sodium-taurocholate cotransporting polypeptide, organic anion transporting polypeptide [Oatp]1a1, Oatp1b2, and bile salt export pump) and BA biosynthetic enzymes (Cyp7a1, 7b1, 8b1, and 27a1) in mouse liver, but increased mRNA expression of some efflux transporters (breast cancer resistance protein, multidrug resistance transporter 2, multidrug resistance-associated protein [Mrp] 2, Mrp3, and Mrp4), primarily via a PPAR?-dependent mechanism. Moreover, PFNA increased free and total cholesterol in mouse liver but not in mouse serum. Furthermore, PFNA increased mRNA expression of sterol transporters, namely Abca1, g1, g5/g8, and steroidogenic acute regulatory protein via PPAR?. In conclusion, PFNA produced cholestasis in mouse liver, and the activation of PPAR? plays a central role in regulating BA and cholesterol metabolism and transport in mouse serum and liver.

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC6693384 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alteration of Bile Acid and Cholesterol Biosynthesis and Transport by Perfluorononanoic Acid (PFNA) in Mice.

Zhang Yue Y   Zhang Youcai Y   Klaassen Curtis D CD   Cheng Xingguo X  

Toxicological sciences : an official journal of the Society of Toxicology 20180301 1


Perfluorochemicals produce hepatotoxic effects via activation of peroxisome proliferator-activated receptor alpha (PPARα) and constitutive androstane receptor (CAR) nuclear receptors in animals. Bile formation is one major liver function. But it remains unknown whether perfluorochemicals alter metabolism of bile acids (BAs) in liver. The present study was designed to determine the impact of perfluorononanoic acid (PFNA) on BA and cholesterol homeostasis in mice. A single dose of PFNA (0.1 mmol/k  ...[more]

Similar Datasets

| S-EPMC5033696 | biostudies-literature
| S-EPMC3109201 | biostudies-literature
| S-EPMC6893479 | biostudies-literature
| S-EPMC8449244 | biostudies-literature
| S-EPMC7816163 | biostudies-literature
| S-EPMC4451855 | biostudies-literature
| S-EPMC4870845 | biostudies-literature
| S-EPMC7112145 | biostudies-literature
2024-10-02 | GSE265876 | GEO
| S-EPMC9964488 | biostudies-literature