Unknown

Dataset Information

0

Minimal n-noids in hyperbolic and anti-de Sitter 3-space.


ABSTRACT: We construct minimal surfaces in hyperbolic and anti-de Sitter 3-space with the topology of a n-punctured sphere by loop group factorization methods. The end behaviour of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e. rotational symmetric minimal cylinders. The minimal surfaces in H3 extend to Willmore surfaces in the conformal 3-sphere S 3?=?H3?S2?H3.

SUBMITTER: Bobenko AI 

PROVIDER: S-EPMC6694303 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Minimal <i>n</i>-noids in hyperbolic and anti-de Sitter 3-space.

Bobenko Alexander I AI   Heller Sebastian S   Schmitt Nicholas N  

Proceedings. Mathematical, physical, and engineering sciences 20190717 2227


We construct minimal surfaces in hyperbolic and anti-de Sitter 3-space with the topology of a <i>n</i>-punctured sphere by loop group factorization methods. The end behaviour of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e. rotational symmetric minimal cylinders. The minimal surfaces in H<sup>3</sup> extend to Willmore surfaces in the conformal 3-sphere <i>S</i> <sup>3</sup> = H<sup>3</sup>∪S<sup>2</sup>∪H<sup>3</sup>. ...[more]

Similar Datasets

| S-EPMC6114987 | biostudies-literature
| S-EPMC7434093 | biostudies-literature
| S-EPMC5678097 | biostudies-literature
| S-EPMC7943198 | biostudies-literature
| S-EPMC10166537 | biostudies-literature
| S-EPMC4957117 | biostudies-literature
| S-EPMC5694768 | biostudies-literature
| S-EPMC8204532 | biostudies-literature
| S-EPMC8668897 | biostudies-literature
| S-EPMC9997089 | biostudies-literature