ABSTRACT: In addition to analgesia, opioids produce opioid-induced hyperalgesia (OIH) and neuroplasticity characterized by prolongation of inflammatory-mediator-induced hyperalgesia (hyperalgesic priming). We evaluated the hypothesis that hyperalgesia and priming induced by opioids are mediated by similar nociceptor mechanisms. In male rats, we first evaluated the role of nociceptor Toll-like receptor 4 (TLR4) in OIH and priming induced by systemic low-dose morphine (LDM, 0.03 mg/kg). Intrathecal oligodeoxynucleotide antisense to TLR4 mRNA (TLR4 AS-ODN) prevented OIH and prolongation of prostaglandin E2 hyperalgesia (priming) induced by LDM. In contrast, high-dose morphine (HDM, 3 mg/kg) increased nociceptive threshold (analgesia) and induced priming, neither of which was attenuated by TLR4 AS-ODN. Protein kinase C ? (PKC?) AS-ODN also prevented LDM-induced hyperalgesia and priming, whereas analgesia and priming induced by HDM were unaffected. Treatment with isolectin B4 (IB4)-saporin or SSP-saporin (which deplete IB4+ and peptidergic nociceptors, respectively), or their combination, prevented systemic LDM-induced hyperalgesia, but not priming. HDM-induced priming, but not analgesia, was markedly attenuated in both saporin-treated groups. In conclusion, whereas OIH and priming induced by LDM share receptor and second messenger mechanisms in common, action at TLR4 and signaling via PKC?, HDM-induced analgesia, and priming are neither TLR4 nor PKC? dependent. OIH produced by LDM is mediated by both IB4+ and peptidergic nociceptors, whereas priming is not dependent on the same population. In contrast, priming induced by HDM is mediated by both IB4+ and peptidergic nociceptors. Implications for the use of low-dose opioids combined with nonopioid analgesics and in the treatment of opioid use disorder are discussed.SIGNIFICANCE STATEMENT Opioid-induced hyperalgesia (OIH) and priming are common side effects of opioid agonists such as morphine, which acts at ?-opioid receptors. We demonstrate that OIH and priming induced by systemic low-dose morphine (LDM) share action at Toll-like receptor 4 (TLR4) and signaling via protein kinase C ? (PKC?) in common, whereas systemic high-dose morphine (HDM)-induced analgesia and priming are neither TLR4 nor PKC? dependent. OIH produced by systemic LDM is mediated by isolectin B4-positive (IB4+) and peptidergic nociceptors, whereas priming is dependent on a different class of nociceptors. Priming induced by systemic HDM is, however, mediated by both IB4+ and peptidergic nociceptors. Our findings may provide useful information for the use of low-dose opioids combined with nonopioid analgesics to treat pain and opioid use disorders.