Ontology highlight
ABSTRACT:
SUBMITTER: Zhang W
PROVIDER: S-EPMC6707297 | biostudies-literature | 2019 Aug
REPOSITORIES: biostudies-literature
Zhang Wen W Voloudakis Georgios G Rajagopal Veera M VM Readhead Ben B Dudley Joel T JT Schadt Eric E EE Björkegren Johan L M JLM Kim Yungil Y Fullard John F JF Hoffman Gabriel E GE Roussos Panos P
Nature communications 20190823 1
Transcriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we generate a small but significant improvement in the accuracy of transcriptome prediction and increase the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 s ...[more]