Unknown

Dataset Information

0

Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues.


ABSTRACT: Repetitive sequences are hotspots of evolution at multiple levels. However, due to difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content, beyond microsatellites, in proteomes and genomes directly from proteomic and genomic raw data. This method was applied to a wide range of tumors and normal tissues. We identify high similarity between repeat instability patterns in tumors and their patient-matched adjacent normal tissues. Nonetheless, tumor-specific signatures both in protein expression and in the genome strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We observe an inverse relationship between repeat instability and point mutation load within and across patients independent of other somatic aberrations. Thus, repeat instability is a distinct, transient, and compensatory adaptive mechanism in tumor evolution and a potential signal for early detection.

SUBMITTER: Persi E 

PROVIDER: S-EPMC6708321 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues.

Persi Erez E   Prandi Davide D   Wolf Yuri I YI   Pozniak Yair Y   Barnabas Georgina D GD   Levanon Keren K   Barshack Iris I   Barbieri Christopher C   Gasperini Paola P   Beltran Himisha H   Faltas Bishoy M BM   Rubin Mark A MA   Geiger Tamar T   Koonin Eugene V EV   Demichelis Francesca F   Horn David D  

Proceedings of the National Academy of Sciences of the United States of America 20190806 34


Repetitive sequences are hotspots of evolution at multiple levels. However, due to difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content, beyond microsatellites, in proteomes and genomes directly from proteomic and genomic raw data. This method was applied to a wide range of tumors and normal tissues. We identify high similarity between repeat  ...[more]

Similar Datasets

2020-06-02 | PXD012574 | Pride
2017-12-31 | GSE100926 | GEO
2014-09-22 | GSE61615 | GEO
2013-03-15 | E-GEOD-45184 | biostudies-arrayexpress
2014-09-22 | E-GEOD-61615 | biostudies-arrayexpress
| S-EPMC8898628 | biostudies-literature
| S-EPMC5054074 | biostudies-literature
| S-EPMC9909298 | biostudies-literature
| S-EPMC4919655 | biostudies-literature
| S-EPMC6769942 | biostudies-literature